Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090095-6    https://doi.org/10.11896/cldb.21090095
  无机非金属及其复合材料 |
复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究
张进治*, 谢亮
北方工业大学理学院,北京 100144
Study on the Ultrasonic Photocatalytic Behavior of Composite Photocatalyst CoFe2O4/BiVO4/Tourmaline
ZHANG Jinzhi*, XIE Liang
School of Science, North China University of Technology, Beijing 100144, China
下载:  全 文 ( PDF ) ( 13814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以电气石为载体,采用水热法原位生长BiVO4、CoFe2O4,得到CoFe2O4/BiVO4/电气石复合光催化剂,利用XRD、SEM、EDS、UV-Vis DRS等方法对材料进行了表征,通过降解灿烂绿对样品的声光催化性能进行评价。结果表明,在60 min可见光下,BiVO4对灿烂绿的降解率为33.5%,CoFe2O4(10%)/BiVO4(45%)/电气石对灿烂绿的降解率为74%;在60 min可见光+超声下,BiVO4对灿烂绿的降解率为61.5%,CoFe2O4(10%)/BiVO4(45%)/电气石在声光作用下(12 min内)对灿烂绿的降解率高达99.2%。高效的降解率可能与复合结构的异质结有关,CoFe2O4/BiVO4/电气石对可见光的吸收能力得到提高,促进了光生电子-空穴的分离,从而有效增强光降解性能。另外,从超声+光催化的效果可看出超声协同光催化降解效果显著。声光催化在有机污染物降解领域内的应用成为一个重要研究方向,如能结合彼此优点,可望开发出高效实用的催化材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张进治
谢亮
关键词:  复合光催化剂  超声-光催化  铁酸钴/钒酸铋/电气石    
Abstract: CoFe2O4/BiVO4/tourmaline composite photocatalysts were grown in situ by hydrothermal method with tourmaline as carrier. The materials were characterized by XRD, SEM, EDS and UV-Vis DRS. The acousto-optic catalytic performance of the samples was evaluated by degrading brilliant green. The results showed that under visible light in 60 min, the degradation rate of brilliant green by BiVO4 was 33.5%, the degradation rate of brilliant green by CoFe2O4 (10wt%)/BiVO4(45wt%)/tourmaline was 74%; Under visible light+ultrasound for 60 min, the degradation rate of brilliant green by BiVO4 was 61.5%, and the degradation rate of brilliant green by CoFe2O4 (10wt%)/BiVO4 (45wt%)/tourmaline acousto-optic (within 12 min) was as high as 99.2%. The efficient degradation rate may be related to the heterojunction of the composite structure. CoFe2O4/BiVO4/tourmaline improves the absorption capacity of visible light, promotes the separation of photogenerated electrons and holes, and effectively enhances the photodegradation performance. In addition, from the effect of ultrasound+photocatalysis, it can be seen that ultrasound cooperates with photocatalysis. The application of acoustooptic catalysis in the degradation of organic pollutants is becoming an important research direction. If we can combine the advantages of each other, it is expected to develop efficient and practical catalytic materials.
Key words:  composite photocatalyst    ultrasound-photocatalysis    CoFe2O4/BiVO4/tourmaline
发布日期:  2023-03-27
ZTFLH:  O643  
基金资助: 北京市高水平队伍建设青年拔尖人才项目(CIT&TCD201904012)
通讯作者:  *张进治,北方工业大学副教授、物理系副主任。1986年本科毕业于山东大学。主要研究方向为光催化纳米材料。最近研究了BiVO4、Ag/BiVO4、Au/BiVO4、Gd2O3/BiVO4、Cu/BiVO4、BiVO4/Co3O4、BiVO4/NiO、Co3O4/ZnO/BiVO4等异质结材料的制备和光催化效果。在国内核心期刊和国际期刊发表学术论文46篇,其中SCI、EI收录21篇。主持多项研发项目。主编了《大学物理实验》和《工科物理实验》两本大学物理实验教材。zhangjzh@ncut.edu.cn   
引用本文:    
张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
ZHANG Jinzhi, XIE Liang. Study on the Ultrasonic Photocatalytic Behavior of Composite Photocatalyst CoFe2O4/BiVO4/Tourmaline. Materials Reports, 2023, 37(6): 21090095-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090095  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090095
1 Hu X H, Liu X W, Gu K C, et al. Development and Application of Materials, 2016, 31(6), 56(in Chinese).
胡相红, 刘欣伟, 谷科城, 等. 材料开发与应用, 2016, 31(6), 56.
2 Qi S Y, Wu C, Wang D P, et al. Chinese Journal of Inorganic Chemitry, 2017, 33(10), 1789 (in Chinese).
亓淑艳, 吴超, 王德朋, 等. 无机化学学报, 2017, 33(10), 1789.
3 Feng Y W, Li L. Guangdong Chemical Industry, 2020, 47(15), 149(in Chinese).
冯艳文, 李璐. 广东化工, 2020, 47(15), 149.
4 Qi S Y, Wang D P, Zhao Y D, et al. Journal of Materials Engineering, 2019, 47(9), 145(in Chinese).
亓淑艳, 王德朋, 赵亚栋, 等. 材料工程, 2019, 47(9), 145.
5 He D L, Zhang L X, Shu X Y, et al. New Chemical Materials, 2018, 46(8), 93(in Chinese).
何登良, 张蓝心, 舒小元, 等. 化工新型材料, 2018, 46(8), 93.
6 Wang X Q, Wang R, Yu L. Journal of University of Science and Techno-logy Liaoning, 2016, 39(5), 365(in Chinese).
王喜全, 王瑞, 于亮, 辽宁科技大学学报, 2016, 39(5), 365.
7 Jia Z, Ren S, Zhang J J, et al. Acta Photonica Sinica, 2021, 50(1), 1(in Chinese).
贾哲, 任帅, 张洁静, 等. 光子学报, 2021, 50 (1), 1.
8 Wu J W, Zhai F W, Chen C X, et al. Guangzhou Chemical Industry, 2021, 49(4), 37(in Chinese).
吴江稳, 翟福旺, 陈朝鑫, 等. 广州化工, 2021, 49(4), 37.
9 Wang W T, Chen S H, Zhang C, et al. Journal of Functional Materials, 2021, 52(5), 05117(in Chinese).
王文涛, 陈书航, 张崇, 等. 功能材料, 2021, 52(5), 05117.
10 Huang F P, Zou Z B, Zhou X M, et al. Journal of Functional Materials, 2020, 51(12), 12113(in Chinese).
黄凤萍, 邹正波, 周鑫敏, 等. 功能材料, 2020, 51(12), 12113.
11 Li P, Zhang H Y, Zhang J, et al. Journal of Xinjiang University, 2020, 37(1), 8(in Chinese).
李鹏, 张红燕, 张军, 等. 新疆大学学报, 2020, 37(1), 8.
12 Wu H Y, Chen C, Chen H S, et al. Chemistry & Bioengineering, 2020, 37(4), 39(in Chinese).
武华乙, 陈川, 陈欢生, 等. 化学与生物工程, 2020, 37(4), 39.
13 Chen Q H, Wang X Q. New Chemical Materials, 2020, 48 (11), 112(in Chinese).
陈奇慧, 王雪芹. 化工新型材料, 2020, 48 (11), 112.
14 Cui D F, Li Y K, Fan Y Y, et al. Micronanoelectronic Technology, 2020, 57 (10), 776(in Chinese).
崔丹凤, 李渊凯, 范燕云, 微纳电子技术, 2020, 57(10), 776.
15 Zhang J Z, Xie L, Li L J. Journal of North China University of Technology, 2015, 27 (1), 66(in Chinese).
张进治, 谢亮, 李灵杰. 北方工业大学学报, 2015, 27(1), 66.
16 Zhao F Y, Jin Z R, Cao S J. Industrial Water Treatment, 2021, 41 (1), 113(in Chinese).
赵福友, 金泽睿, 曹帅杰. 工业水处理, 2021, 41 (1), 113.
17 Dai J X, Tao H Y, Xia Y X. Journal of Guangdong Medical University, 2019, 37(4), 360(in Chinese).
戴娟秀, 陶鸿燕, 夏宜馨. 广东医科大学学报, 2019, 37(4), 360.
18 Jiang X, Chen S Y, Zhang J. Chemical Engineer, 2019, 11, 34(in Chinese).
江馨, 陈思怡, 张晶. 化学工程师, 2019, 11, 34.
19 Sun S. Studies on processing and applied foundation of tourmaline mineral. Master's Thesis, Ji Lin University, China, 2010 (in Chinese)
孙双. 电气石矿物材料的加工及其应用基础研究. 硕士学位论文, 吉林大学, 2010.
20 Liu N N, Du P C, Zhou P, et al. Applied Surface Science, 2020, 532(1), 147440.
21 Pan Z L. Crystallography and mineralogy, Beijing Geological Press, China, 1993(in Chinese)
潘兆橹. 结晶学及矿物学, 北京地质出版社, 1993.
22 Setkova T V, Shapovalov Y B, Balitskii V S. Doklady Earth Sciences, 2009, 424(1), 82.
23 Lussier A J. Mineral Magazine, 2016, 75(1), 65.
24 Zhang Q, Li H, Feng Y W, et al. Industrial Water Treatment, 2015, 35(3), 68.
25 Wang J G, Guo P Q, Wang X K, et al. Progress in Chemistry, 2005, 17(3), 549(in Chinese).
王金刚, 郭培全, 王西奎, 等. 化学进展, 2005, 17(3), 549.
[1] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[2] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[3] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[4] 李想, 张军. 氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展[J]. 材料导报, 2022, 36(22): 20100246-9.
[5] 李渊, 侯宇坤, 赵立国, 谭小耀. Cu-SSZ-13与Fe-β混合催化剂上NH3-SCR性能研究[J]. 材料导报, 2022, 36(19): 21070098-5.
[6] 张慧敏, 单展, 王宏, 张晓艳. 球状钼酸钙在可见光下选择性光催化降解废水中的抗生素[J]. 材料导报, 2022, 36(19): 22010249-7.
[7] 李兵, 黄有鹏, 吴福礼, 杨本宏. Ti3C2Tx/Bi2WO6复合材料的制备及其光催化性能[J]. 材料导报, 2022, 36(17): 21010021-4.
[8] 李东, 吴发超, 李瑞, 高彩云. 表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能[J]. 材料导报, 2022, 36(13): 21040241-6.
[9] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[10] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[11] 曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
[12] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[13] 韦岳长, 赖可溱, 熊靖, 李远锋, 吴彤彤. 有机氯硅烷高沸物催化裂解材料研究进展[J]. 材料导报, 2021, 35(21): 21022-21027.
[14] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[15] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed