Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21030163-13    https://doi.org/10.11896/cldb.21030163
  无机非金属及其复合材料 |
金属氧化物电催化析氧机理的研究进展
王思弘, 宋钫*
上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240
Research Progress in Oxygen Evolution Reaction Mechanism of Metal Oxides
WANG Sihong, SONG Fang*
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 17665KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电解水制氢是风能、潮汐能、太阳能等可再生能源转换和存储的重要途径。受限于四电子缓慢动力学过程,析氧反应(Oxygen evolution reaction, OER)是水分解的瓶颈反应。高活性析氧电催化剂是实现高效电解水制氢的关键之一。自从20世纪电解水发展以来,金属氧化物由于具有较好的活性和稳定性,是研究最深入也是最有发展前景的一类低成本析氧电催化剂。
对催化反应机理的认识是高效析氧电催化剂理性设计的前提和关键,开发高效稳定的析氧催化剂并阐明其反应机理是目前析氧电催化领域的热点课题。按照一般异相催化的机理范式,人们提出了传统吸附机理,并建立了相应的活性预测模型来指导催化剂的研究。然而随着研究的深入,基于传统催化机理的活性预测模型和描述符的局限性日趋显现,部分新型催化剂的高活性和动力学特征无法用传统机理模型进行解释,析氧催化剂的研究也由此遭遇瓶颈。
近年来,得益于各种先进表征手段和理论计算的飞速发展,新型析氧电催化机理逐渐被发展,为下一代高性能电催化剂的指明了方向。目前提出的新型催化机理主要有:晶格氧机理、双位点协同耦联机理、质子受体机理。同时,近期在一些催化剂中影响催化剂稳定性的阳离子析出机理也得以阐明。
本文从梳理金属氧化物催化剂的结构和传统催化机理出发,对目前四种新型电催化机理——晶格氧机理、双位点协同耦联机理、质子受体机理和阳离子析出机理,进行了系统性分析,并对理论计算辅助的析氧机理研究以及电催化活性描述符进行了总结,最后对当前析氧电催化机理研究中存在的问题以及可能的解决方案进行了展望。本文期望可为相关领域的研究工作提供参考,从而有效推动下一代高性能析氧电催化剂的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王思弘
宋钫
关键词:  析氧反应  催化机理  活性位点  金属氧化物    
Abstract: Water splitting is essential for the conversion and storage of renewable energy such as wind, tidal, and solar energy. Oxygen evolution reaction (OER) is the bottleneck of water splitting, due to the sluggish four-electron transfer process. An efficient and durable electrocatalyst is required to improve the overall efficiency of electrolysis. Metal oxides have been widely investigated in the past few decades, and are considered as the most promising OER electrocatalyst, given the low cost and moderate performance.
The rational design of efficient catalysts firstly calls for a better understanding of the OER mechanism. Much efforthas been devoted to providing insights to elucidate the detailed mechanism. The traditional adsorption-desorption model was learned from heterogeneous catalysis and worked to search for descriptors, which guides the fast screen of advanced electrocatalysts. More recently, the traditional mechanism has been progressively challenged. The high activity and kinetics of some new electrocatalysts can not be fully explained or even contradict the traditional mechanism, which in turn preclude the exploration of novel electrocatalysts.
Thanks to the development of advanced characterization techniques and theoretical calculation methods in recent years, the understanding of the OER mechanism has been pushed forwards well. New catalytic mechanisms have been proposed and validated, which sheds light on the rational design of advanced electrocatalysts. These new mechanisms include: lattice oxygen evolution mechanism (LOM), dual-sites mechanism with O-O bond coupling, proton acceptor mechanism. In addition, the mechanism of cation dissolution has also been elucidated in some cases to explain the stability of the catalysts.
In this review, we start with the introduction of metal oxides and the traditional OER mechanisms. Following this, we systematically summarize the newly proposed mechanisms of lattice oxygen evolution mechanism (LOM), dual-sites mechanism with O-O bond coupling, proton acceptor mechanism, and cation dissolution mechanism. The representative researches on theoretical calculation and descriptors are highlighted. In the end, present challenges are discussed and suggestions that are potentially interesting for future studies are provided for the hotly developed field. We hope the review will become an important tutorial for the field, pushing forwards the fast exploration of advanced OER electrocatalysts.
Key words:  oxygen evolution reaction    catalytic mechanism    catalytic active site    metal oxide
发布日期:  2022-12-09
ZTFLH:  O643.36  
基金资助: 国家自然科学基金(51902200);上海市自然科学基金(19ZR1425300)
通讯作者:  *songfang@sjtu.edu.cn   
作者简介:  王思弘,2018年6月毕业于西安交通大学,获得工学学士学位;2021年6月毕业于上海交通大学,获工学硕士学位。目前在宋钫副教授课题组任研究助理,主要研究方向为析氧电催化机理。
宋钫,上海交通大学材料科学与工程学院副教授、博士研究生导师。2006年在上海交通大学材料科学与工程学院获得工学学士学位, 2012年在上海交通大学获得材料学博士学位。2013年5月至2018年6月赴瑞士洛桑联邦理工学院开展博士后研究工作,2018年9月加入上海交通大学金属基复合材料国家重点实验室,任职副教授。主要从事能源电催化材料的研究。至今在Nature Communication、Journal of the American Chemical Society、 Energy & Environmental Science、ACS Central Science、Joule、Advanced Functional Materials等国际著名期刊发表论文 27篇。
引用本文:    
王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
WANG Sihong, SONG Fang. Research Progress in Oxygen Evolution Reaction Mechanism of Metal Oxides. Materials Reports, 2022, 36(23): 21030163-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030163  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21030163
1 Lewis N S, Nocera D G. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43), 15729.
2 Cook T R, Dogutan D K, Reece S Y, et al. Chemical Reviews, 2010, 110(11), 6474.
3 Chu S, Majumdar A. Nature, 2012, 488(7411), 294.
4 Suen N T, Hung S F, Quan Q, et al. Chemical Society Reviews, 2017, 46(2), 337.
5 Walter M G, Warren E L, Mckone J R, et al. Chemical Reviews, 2010, 110(11), 6446.
6 Hunter B M, Gray H B, Muller A M. Chemical Reviews, 2016, 116(22), 14120.
7 Tahir M, Pan L, Idrees F, et al. Nano Energy, 2017, 37, 136.
8 Bockris J O M. The Journal of Chemical Physics, 1956, 24(4), 817.
9 Doyle R L, Lyons M E G. Physical Chemistry Chemical Physics, 2013, 15(14), 5224.
10 Man I C, Su H Y, Calle-Vallejo F, et al. Chemcatchem, 2011, 3(7), 1159.
11 Fang Y H, Liu Z P. ACS Catalysis, 2014, 4(12), 4364.
12 Lyons M E G, Brandon M P. Journal of Electroanalytical Chemistry, 2010, 641(1-2), 119.
13 Meyer R E. Journal of the Electrochemical Society, 1960, 107(10), 847.
14 Dau H, Limberg C, Reier T, et al. ChemCatChem, 2010, 2(7), 724.
15 Trasatti S. Journal of Electroanalytical Chemistry, 1980, 111(1), 125.
16 Trasatti S. Electrochimica Acta, 1984, 29(11), 1503.
17 Rossmeisl J, Qu Z W, Zhu H, et al. Journal of Electroanalytical Chemistry, 2007, 607(1), 83.
18 Rossmeisl J, Logadottir A, Nørskov J K. Chemical Physics, 2005, 319(1), 178.
19 Damjanovic A, Jovanovic B. Journal of The Electrochemical Society, 1976, 123(3), 374.
20 Rosenthal D J, Lawrence J H. Medical Clinics of North America, 1956, 40(5), 1515.
21 Bockris J O M, Otagawa T. The Journal of Physical Chemistry, 1983, 87(15), 2960.
22 Binninger T, Mohamed R, Waltar K, et al. Scientific Reports, 2015, 5, 1.
23 Pan Y, Xu X, Zhong Y, et al. Nature Communication, 2020, 11(1), 2002.
24 Liu J, Jia E, Stoerzinger K A, et al. The Journal of Physical Chemistry C, 2020, 124(28), 15386.
25 Grimaud A, Diaz-Morales O, Han B, et al. Nature Chemistry, 2017, 9(5), 457.
26 Wang X, Pan Z, Chu X, et al. Angewandte Chemie International Edition, 2019, 58(34), 11720.
27 Zhao J W, Li C F, Shi Z X, et al. Research, 2020, 2020, 6961578.
28 Wohlfahrt-Mehrens M, Heitbaum J. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 237(2), 251.
29 Fierro S, Nagel T, Baltruschat H, et al. Electrochemistry Communications, 2007, 9(8), 1969.
30 Kasian O, Geiger S, Li T, et al. Energy & Environmental Science, 2019, 12(12), 3548.
31 Kasian O, Grote J P, Geiger S, et al. Angewandte Chemie International Edition, 2018, 57(9), 2488.
32 Macounová K, Jirkovský J, Makarova M V, et al. Journal of Solid State Electrochemistry, 2009, 13(6), 959.
33 Stoerzinger K A, Diaz-Morales O, Kolb M, et al. ACS Energy Letters, 2017, 2(4), 876.
34 Zhang M, De Respinis M, Frei H. Nature Chemisty, 2014, 6(4), 362.
35 Merrill M, Worsley M, Wittstock A, et al. Journal of Electroanalytical Chemistry, 2014, 717, 177.
36 Trzesniewski B J, Diaz-Morales O, Vermaas D A, et al. Journal of the American Chemisty Society, 2015, 137(48), 15112.
37 Wang H Y, Hung S F, Hsu Y Y, et al. The Journal of Physical Chemistry Letters, 2016, 7(23), 4847.
38 Ullman A M, Brodsky C N, Li N, et al. Journal of the American Chemisty Society, 2016, 138(12), 4229.
39 Pasquini C, Zaharieva I, Gonzalez-Flores D, et al. Journal of the American Chemical Society, 2019, 141(7), 2938.
40 Roy C, Sebok B, Scott S B, et al. Nature Catalysis, 2018, 1(11), 820.
41 Lee S, Banjac K, Lingenfelder M, et al. Angewandte Chemie-Internatio-nal Edition, 2019, 58(30), 10295.
42 Baran J D, Grönbeck H, Hellman A. Journal of the American Chemical Society, 2014, 136(4), 1320.
43 Busch M, Halck N B, Kramm U I, et al. Nano Energy, 2016, 29, 126.
44 Surendranath Y, Kanan M W, Nocera D G. Journal of the American Chemical Society, 2010, 132(46), 16501.
45 She S, Zhu Y, Chen Y, et al. Advanced Energy Materials, 2019, 9(20), 1900429.
46 Curcio A, Wang J, Wang Z, et al. Advanced Functional Materials, 2021, 31(4), 2008077.
47 Song F, Busch M M, Lassalle-Kaiser B, et al. ACS Central Science, 2019, 5(3), 558.
48 Bai L, Lee S, Hu X. Angewandte Chemie International Edition, 2021, 60(6), 3095.
49 Gao Z W, Liu J Y, Chen X M, et al. Advanced Materials, 2019, 31(11), 1804769.
50 Rouxel J. Chemistry-A European Journal, 1996, 2(9), 1053.
51 Tarascon J M, Vaughan G, Chabre Y, et al. Journal of Solid State Chemistry, 1999, 147(1), 410.
52 Grimaud A, Hong W T, Shao-Horn Y, et al. Nature Materials, 2016, 15(2), 121.
53 Huang Z F, Song J, Du Y, et al. Nature Energy, 2019, 4(4), 329.
54 Wang J, Kim S J, Liu J, et al. Nature Catalysis, 2021, 4(3), 212.
55 Wu H, Yang T, Du Y, et al. Advanced Materials, 2018, 30(52), 180431.
56 Zagalskaya A, Evazzade I, Alexandrov V. ACS Energy Letters, 2021, 6(3), 1124.
57 Creazzo F, Galimberti D R, Pezzotti S, et al. The Journal of Chemical Physics, 2019, 150(4), 041721.
58 Yang L, Wu Y, Wu F, et al. Journal of Materials Chemistry A, 2020, 8(40), 20946.
59 Gono P, Pasquarello A. Journal of Chemical Physics, 2020, 152(10), 104712.
60 Zhao Z J, Liu S, Zha S, et al. Nature Reviews Materials, 2019, 4(12), 792.
61 Bockris J O. Journal of the Electrochemical Society, 1984, 131(2), 290.
62 Zheng Y, Jiao Y, Zhu Y, et al. Journal of the American Chemical Society, 2017, 139(9), 3336.
63 Suntivich J, May K J, Gasteiger H A, et al. Science, 2011, 334(6061), 1383.
64 Grimaud A, May K J, Carlton C E, et al. Nature Communications, 2013, 4, 2439.
[1] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[2] 李泽朕, 刘昊, 徐沛瑶, 陈洲江, 王士斌, 陈爱政. 超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展[J]. 材料导报, 2022, 36(3): 20080184-6.
[3] 初燕芳, 张琳, 谢彬, 严能, 何俊杰, 李靖. 高能球磨破碎铁掺杂δ-MnO2对其电容提升的机理研究[J]. 材料导报, 2022, 36(20): 22010246-7.
[4] 潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
[5] 郭玥婷, 雷美玲, 陈文明, 辛毅, 许文彩, 闵崎, 陈立坤, 吴遥, 孔令策, 左言军. 纳米金属氧化物在化学战剂洗消方面的研究进展[J]. 材料导报, 2022, 36(11): 20090180-10.
[6] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[7] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[8] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[9] 韩斌, 冯思琛, 徐俊, 李朋威. Fe掺杂NiCo-LDH的制备及OER催化性能[J]. 材料导报, 2021, 35(14): 14001-14006.
[10] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[11] 谢旭豪, 许胜超, 徐志勇, 赵文波. 硫醇类化合物合成工艺与方法[J]. 材料导报, 2020, 34(7): 7168-7176.
[12] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[13] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[14] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[15] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed