Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22010246-7    https://doi.org/10.11896/cldb.22010246
  新型环境功能材料 |
高能球磨破碎铁掺杂δ-MnO2对其电容提升的机理研究
初燕芳1, 张琳2, 谢彬2, 严能1, 何俊杰3, 李靖3,*
1 云南农业大学资源与环境学院,昆明 650500
2 云南农业大学建筑工程学院,昆明 650500
3 云南农业大学理工学部,昆明 650500
Study on Enhancing Capacitance of Fe-doped δ-MnO2 by High-energy Ball Milling and Its Mechanism
CHU Yanfang1, ZHANG Lin2, XIE Bin2, YAN Neng1, HE Junjie3, LI Jing3,*
1 College of Resources and Environment, Yunnan Agricultural University, Kunming 650500, China
2 College of Civil Engineering, Yunnan Agricultural University, Kunming 650500, China
3 Faculty of Science and Technology, Yunnan Agricultural University, Kunming 650500, China
下载:  全 文 ( PDF ) ( 6002KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 层状结构的δ-MnO2有利于离子扩散和电荷存储转移,但电导率差、比表面积小、结构团聚等缺陷限制了其电容性能。本工作提出了一种高效的辅助工艺,该工艺利用球磨的高能机械冲击力改善δ-MnO2的团聚现象,使得致密片层状结构的δ-MnO2的粒径显著减小、结构的有序性降低、更多有利于其氧化还原反应快速进行的活性位点被暴露,有利于赝电容和扩散电容的提升。通过研究材料的晶体结构、形貌特征以及元素组成,探究球磨对材料电化学储能的影响机制。电化学测试结果表明,球磨后的δ-MnO2表现出更优异的电容性能。在电流密度为0.5 A·g-1时,δ-MnO2的比电容为237.5 F·g-1,较未球磨的δ-MnO2纳米片提高250%;在0.5 A·g-1的电流密度下循环10 000次,δ-MnO2仍能保持90.4%的初始电容。通过对球磨前后的 δ-MnO2电化学性能进行综合评估,证明了球磨辅助处理是提升其电容性能的有效手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初燕芳
张琳
谢彬
严能
何俊杰
李靖
关键词:  δ-MnO2  结构团聚  活性位点  赝电容    
Abstract: δ-MnO2 with layered structure is favorable for ion diffusion and charge storage transfer. However, defects such as poor conductivity, small specific surface area and structure agglomeration, limit its electrochemical performance. This work proposed an efficient auxiliary process, in which the agglomeration phenomenon of δ-MnO2 was inhibited by the high-energy mechanical impact force of ball milling, making the particle size of δ-MnO2 with dense block structure significantly reduced, the order of the structure disturbed, and more active sites exposed to facilitate the rapid oxidation-reduction reaction. Thus its constraint capacitance and diffusion capacitance were enhanced. By studying the crystal structure, morphology and elemental composition of materials, the influence mechanism of ball milling on electrochemical energy storage of materials was explored. Electrochemical test results show that δ-MnO2 after ball milling has better electrochemical performance. When the current density is 0.5 A·g-1, the specific capacitance is 237.5 F·g-1, which increases by 250% compared with that of the δ-MnO2 nanosheets without ball mil-ling. After 10 000 cycles at 0.5 A·g-1 current density, δ-MnO2 can still maintain 90.4% of the initial capacitance. The comprehensive evaluation of δ-MnO2 by cyclic charge-discharge tests shows that the assisted treatment of δ-MnO2 by ball milling is an effective means to improve its energy storage performance.
Key words:  δ-MnO2    structural agglomeration    active site    constraint apacitance
发布日期:  2022-10-26
ZTFLH:  TB332  
  TM53  
基金资助: 国家自然科学基金(12064050);云南省重大科技专项计划项目(202002AE090010)
通讯作者:  *Li_jing69@ynau.edu.cn   
作者简介:  初燕芳,2019年6月、2022年6月于云南农业大学分别获得农学学士学位和硕士学位。在李靖教授和何俊杰副教授的指导下进行研究,目前主要研究领域为二氧化锰电极材料。
李靖,云南农业大学大学水利学院教授、硕士研究生导师。研究方向为生态环境材料的制备、绿色高标准农田的智能化管理等。1991年毕业于成都科技大学,获工学学士学位。以第一作者(通讯)发表高水平论文50余篇,获发明专利软件著作权20余项。
引用本文:    
初燕芳, 张琳, 谢彬, 严能, 何俊杰, 李靖. 高能球磨破碎铁掺杂δ-MnO2对其电容提升的机理研究[J]. 材料导报, 2022, 36(20): 22010246-7.
CHU Yanfang, ZHANG Lin, XIE Bin, YAN Neng, HE Junjie, LI Jing. Study on Enhancing Capacitance of Fe-doped δ-MnO2 by High-energy Ball Milling and Its Mechanism. Materials Reports, 2022, 36(20): 22010246-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010246  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22010246
1 Gong Y, Zhao D, Wang Q. Water Research, 2018, 147, 440.
2 Xu Y, Zhou H, Wang G, et al. ACS Applied Materials & Interfaces, 2020, 12(37), 41437.
3 Mane V J, Kale S B, Ubale S B, et al. Materials Today Chemistry, 2021, 20, 100473.
4 Hu Z, Xiao X, Huang L, et al. Nanoscale, 2015, 7(38), 16094.
5 Xiong T, Lee W S V, et al. ACS Applied Energy Materials, 2018, 1(10), 5619.
6 Devaraj S, Munichandraiah N. The Journal of Physical Chemistry C, 2008, 112(11), 4406.
7 Wang G, Shao G, Du J, et al. Materials Chemistry and Physics, 2013, 138(1), 108.
8 Wang Y,Huo W C,Zhang Y X, et al. Acta Physico-Chimica Sinica, 2020,36(2),46(in Chinese).
王易,霍旺晨,张育新,等. 物理化学学报, 2020,36(2),46.
9 Liu H, Gu W, Luo B, et al. Electrochimica Acta, 2018, 291, 31.
10 Cao J, Zhang D, Zhang X, et al. Applied Surface Science, 2020, 534, 147630.
11 Zhao S, Liu T, Hou D, et al. Applied Surface Science, 2015, 356, 259.
12 Ochirkhuyag A, Sápi A, Szamosvölgyi Á, et al. Physical Chemistry Chemical Physics, 2020, 22(25), 13999.
13 Lu D, Yao Z J, Li Y Q, et al. Journal of Colloid and Interface Science, 2020, 565, 218.
14 Di Castro V, Polzonetti G. Journal of Electron Spectroscopy and Related Phenomena, 1989, 48(1), 117.
15 Lee M T, Chang J K, Hsieh Y T, et al. Journal of Power Sources, 2008, 185(2), 1550.
16 Zhao Y, Fang Q, Zhu X, et al. Journal of Materials Chemistry A, 2020, 8(18), 8969.
17 Hu Z, Xiao X, Huang L, et al. Nanoscale, 2015, 7(38), 16094.
18 Zhu S, Huo W, Liu X, et al. Nanoscale Advances, 2020, 2(1), 37.
19 Zhou Y, Yang Q H, Dong J. Materials Science Forum, 2020, 999, 21.
20 Hu Q, Jiang X, He M, et al. Electrochimica Acta, 2020, 338, 135896.
21 Li Z, Gu A, Lou Z, et al. Journal of Materials Science, 2017, 52(9), 4852.
22 Natarajan K, Saraf M, Mobin S M. Nanoscale, 2018, 10(27), 13250.
23 Xu M, Cai Y, Wang T, et al. Journal of Alloys and Compounds, 2021, 877, 160243.
24 Huang M, Li F, Dong F, et al. Journal of Materials Chemistry A, 2015, 3(43), 21380.
25 Gao P, Metz P, Hey T, et al. Nature Communications, 2017, 8(1), 1.
26 Moreno-Fernández G, Boulanger N, Nordenström A, et al. Electrochimica Acta, 2021, 370, 137738.
27 Abu-Zied B M, Schwieger W, Asiri A M. Microporous and Mesoporous Materials, 2015, 218, 153.
28 Feng H, Jia D, Zhou Y, et al. Journal of Materials Processing Technology, 2007, 182(1-3), 79.
29 Thapa A K, Pandit B, Thapa R, et al. Electrochimica Acta, 2014, 116, 188.
30 Brezesinski T, Wang J, Tolbert S H, et al. Journal of Sol-Gel Science and Technology, 2011, 57(3), 330.
31 Zhu Y E, Qi X, Chen X, et al. Journal of Materials Chemistry A, 2016, 4(28), 11103.
32 Li W, Yao Z, Zhong Y, et al. Journal of Materials Chemistry A, 2019, 7(17), 10231.
33 Jabeen N, Hussain A, Xia Q, et al. Advanced materials, 2017, 29(32), 1700804.
34 Dubal D P, Lokhande C D, et al. Ceramics International, 2013, 39(1), 415.
35 Zhao Y, Fang Q, Zhu X, et al. Journal of Materials Chemistry A, 2020, 8(18), 8969.
36 Balcı Ö, Buldu M, Ammar A U, et al. Scientific Reports, 2021, 11(1), 1.
37 Zhang M, Zhang X, Liu Z, et al. Ionics, 2020, 26(8), 4129.
38 Li S, Yu L L, Xu W, et al. Journal of Energy Storage, 2021, 33, 102035.
39 Brezesinski T, Wang J, Dunn B, et al. Journal of the American Chemical Society, 2010, 9, 146.
[1] 李诗杰, 韩奎华. 利用少量氧化镍负载提高活性炭比电容[J]. 材料导报, 2021, 35(4): 4012-4016.
[2] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[3] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[4] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[5] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed