Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21120162-6    https://doi.org/10.11896/cldb.21120162
  新型环境功能材料 |
花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究
黄韬博1,2, 谢成瀚1, 李璠1,2, 王奕沣1, 刘文1,2,*
1 北京大学环境科学与工程学院,水沙科学教育部重点实验室,北京 100871
2 北京大学环境科学与工程学院,国家环境保护河流全物质通量重点实验室,北京 100871
Photocatalytic Degradation of Sulfachloropyridazine in Water by Flower-like 2D Carbon Nitride Under Simulated Solar Light
HUANG Taobo1,2, XIE Chenghan1, LI Fan1,2, WANG Yifeng1, LIU Wen1,2,*
1 The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
2 State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 3119KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三聚氰胺和三聚氰酸为主要原料,在二甲基亚砜中通过自组装过程形成超分子作为前驱体,再进行热缩聚制备了花状形貌的二维氮化碳光催化材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和光电化学等对材料进行了系统表征,结果表明所制备的光催化材料为类石墨相的氮化碳(g-C3N4,SCN)。且相比较于热缩聚法合成的传统体相的氮化碳,SCN由于其超薄、均匀的结构组成,具有更高的光吸收能力和更低的禁带宽度(Eg)。另外通过密度泛函理论(DFT)计算,对SCN的光催化激发过程进行了深度机理分析,发现材料独特的超薄氮化碳片和孔道结构抑制了光激发过程后电子-空穴对的复合。以废水中常见的活性药物类污染物磺胺氯哒嗪(SCP)为目标污染物,在模拟太阳光的条件下照射45 min后,目标污染物的去除率为100%,且降解的准一级反应动力学常数(k=0.085 min-1)约为体相氮化碳的两倍。本研究为可应用于高效制药废水污染净化的光催化系统的开发提供了理论指导,也可为新型光催化材料的开发提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄韬博
谢成瀚
李璠
王奕沣
刘文
关键词:  类石墨相氮化碳  密度泛函理论  光催化  药物废水  磺胺氯哒嗪    
Abstract: Supermolecules were prepared using melamine and cyanuric acid as precursors through self-assembly process in dimethyl sulfoxide, which were then undertaken thermal polycondensation reaction to synthesize a two-dimensional (2D) photocatalyst with flower-like morphology. Various characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoelectrochemical measurements, indicate that the fabricated photocatalyst is graphitic carbon nitride (g-C3N4, SCN). In addition, compared with the bulk g-C3N4 prepared by traditional thermal polycondensation method, SCN exhibites a higher light absorption capability and lower bandgap due to its ultrathin and uniform structure composition. Moreover, density functional theory (DFT) calculation deeply reveals the mechanism of the photocatalytic reactions on SCN. The unique ultrathin carbon nitride sheet and channel structure of SCN can suppress the recombination rate of electron-hole pairs. Sulfachloropyridazine (SCP), a common active pharmaceutical pollutant in wastewater, was taken as the target pollutant in this study. After 45 min irradiation under simulated solar light by SCN, the removal efficiency of SCP reaches up to 100%, and the pseudo first-order kinetic constant (k=0.085 min-1) of SCP degradation is about twice that of bulk g-C3N4. This study provides a theoretical guidance for development of photocatalysis technology which can be applied to the purification of pharmaceuticals contaminated wastewater, and also provides a reference for development of new photocatalysts.
Key words:  graphitic carbon nitride (g-C3N4)    density functional theory    photocatalysis    pharmaceutical wastewater    sulfachloropyridazine
发布日期:  2022-10-26
ZTFLH:  X52  
基金资助: 国家重点研发计划青年科学家项目(2021YFA1202500);北京市科技新星计划(Z191100001119054);国家自然科学基金(21906001)
通讯作者:  *wen.liu@pku.edu.cn   
作者简介:  黄韬博,北京大学环境科学与工程学院刘文教授团队研究生。2018年获得河海大学工学学士学位。目前研究主要专注于水处理(PPCP)、环境纳米技术的研究,并通过量子化学方法讨论水处理和环境纳米材料的内在机理。在Water Research、Chemical Engineering Journal、Journal of Hazardous Mate-rials、Water等SCI期刊上发表论文10余篇。
刘文,北京大学环境科学与工程学院教授、博士研究生导师。国家级青年人才入选者,国家重点研发计划项目(青年)首席科学家,北京大学环境纳米实验室主任。2009年毕业于南开大学,获环境工程学士学位;2014年毕业于北京大学,获环境工程博士学位;2014年8月至2017年9月先后在美国奥本大学和佐治亚理工学院从事博士后研究。目前主要从事环境纳米技术、水污染控制工程等方面的研究工作。在国内外期刊上发表学术论文200余篇,其中SCI收录180余篇,包括以第一/通讯作者在Journal of the American Chemical SocietyEnvironmental Science & TechnologyWater Research等期刊上发表的论文。入选美国斯坦福大学发布的2020—2022年世界排名前2%科学家排行榜 “年度影响力”榜单,以及全球学者库评出的2021—2022年“全球顶尖前10万科学家名单”。
引用本文:    
黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
HUANG Taobo, XIE Chenghan, LI Fan, WANG Yifeng, LIU Wen. Photocatalytic Degradation of Sulfachloropyridazine in Water by Flower-like 2D Carbon Nitride Under Simulated Solar Light. Materials Reports, 2022, 36(20): 21120162-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120162  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21120162
1 Ji H, Du P, Zhao D, et al. Applied Catalysis B: Environmental, 2020, 263,118357.
2 Lui A, Yu C. Materials Reports, 2018, 32(Z2),195(in Chinese).
刘爱平, 郁超. 材料导报, 2018, 32(Z2), 195.
3 Tao X, Pan P, Huang T, et al. Chemical Engineering Journal, 2020, 395, 125186.
4 Liu W, Li Y, Liu F, et al. Water Research, 2019, 151,8.
5 Lu X J, Wang Y, Zhang X Y, et al. Journal of Hazardous Materials, 2018, 341, 10.
6 Zheng L L, Wang D, Wu S L, et al. Journal of Materials Chemistry A, 2020, 8(47), 25425.
7 Dong H, Guo X, Yang C, et al. Applied Catalysis B: Environmental, 2018, 230, 65.
8 Liang Z, Xue Y, Wang X, et al. Chemical Engineering Journal, 2021, 421, 130016.
9 Liang Z, Meng X, Xue Y, et al. Journal of Colloid and Interface Science, 2021, 598, 172.
10 Whitesides G M, Mathias J P, Seto C T. Science, 1991, 254(5036), 1312.
11 Jun Y S, Lee E Z, Wang X, et al. Advanced Functional Materials, 2013, 23(29), 3661.
12 Jiang X H, Zhang L S, Liu H Y, et al. Angewandte Chemie International Edition, 2020, 59(51), 23112.
13 Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 Rev. C.01.Wallingford, CT, 2016.
14 Zhang D, Qi J, Ji H, et al. Chemical Engineering Journal, 2020, 400,125918.
15 Jun Y S, Lee E Z, Wang X, et al. Advanced Functional Materials, 2013, 23(29), 3661.
16 Qin Q, Gao X, Wu X, et al. Materials Letters, 2019, 256, 126623.
17 Liang J, Zhang W, Zhao Z, et al. Journal of Hazardous Materials, 2021, 416, 125936.
18 Xiao J, Han Q, Cao H, et al. ACS Catalysis, 2019, 9(10), 8852.
19 Ong W J, Tan L L, Ng Y H, et al. Chemical Reviews, 2016, 116(12), 7159.
20 Sun M, Li J, Dong F, et al. Journal of Huazhong Agricultural University, 2020, 39(5), 17(in Chinese).
孙明禄, 李解元, 董帆. 华中农业大学学报, 2020, 39(5), 17.
21 Chang F, Huang T, Chen L, et al. Environmental Chemistry, 2020, 39(3), 593(in Chinese).
常方, 黄韬博, 陈龙, 等. 环境化学, 2020, 39(3), 593.
22 Li Y, Lyu K, Ho W, et al. Applied Catalysis B: Environmental, 2017, 202, 611.
23 Liu X, Li P, Zhu X, et al. Physical Review A, 2017, 95(3), 033421.
24 Li S, Huang T, Du P, et al. Water Research, 2020, 185, 116286.
25 Pifer A D, Fairey J L. Water Research, 2012, 46(9), 2927.
26 Hou J, Yang M, Wang D, et al. Advanced Energy Materials, 2020, 10(18), 1904152.
[1] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[2] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[3] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[4] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[5] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[6] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[7] 陈龙, 刘兆利, 杨旭东, 张偌涵, 孙玮良, 刘文. 纳米材料光催化灭活新型冠状病毒SARS-CoV-2研究进展与启示[J]. 材料导报, 2022, 36(20): 22100084-12.
[8] 张慧敏, 单展, 王宏, 张晓艳. 球状钼酸钙在可见光下选择性光催化降解废水中的抗生素[J]. 材料导报, 2022, 36(19): 22010249-7.
[9] 李兵, 黄有鹏, 吴福礼, 杨本宏. Ti3C2Tx/Bi2WO6复合材料的制备及其光催化性能[J]. 材料导报, 2022, 36(17): 21010021-4.
[10] 县涛, 高宇姝, 孙小锋, 邸丽景, 马俊, 周永杰. 修饰AuAg合金纳米颗粒对BiOBr纳米片光催化降解和还原性能的提高[J]. 材料导报, 2022, 36(13): 21010273-8.
[11] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[12] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[13] 李园园, 蒲红争, 曾寒露, 蒋明珠, 任彦荣, 公祥南. Sn空位增强Li2SnO3光催化降解四环素的研究[J]. 材料导报, 2022, 36(10): 21030159-6.
[14] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[15] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed