Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 21010028-6    https://doi.org/10.11896/cldb.21010028
  无机非金属及其复合材料 |
Bi2WO6/ZIF-67复合光催化剂的制备及性能研究
常娜1, 陈彦如2, 谢锋1, 王海涛2
1 天津工业大学化学工程与技术学院,天津 300387
2 天津工业大学环境科学与工程学院,天津 300387
Preparation and Photocatalytic Performance of Bi2WO6/ZIF-67 Composite Photocatalyst
CHANG Na1, CHEN Yanru2, XIE Feng1, WANG Haitao2
1 School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
2 School of Environmental Science and Technology, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 6090KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法制备花状Bi2WO6微球,并在其表面负载ZIF-67纳米粒子以制备Bi2WO6/ZIF-67复合光催化剂;采用XRD、XPS、FTIR、SEM等手段对催化剂的结构、表面基团及形貌进行表征;通过测试催化剂的紫外可见漫反射光谱、荧光光谱、电化学阻抗以及光电流密度等,考察了催化剂的光电化学性质,并测定了复合光催化剂在可见光条件下对盐酸四环素的催化降解性能。研究结果表明:ZIF-67纳米粒子被均匀负载到Bi2WO6表面及层级结构中,成功制备了Bi2WO6/ZIF-67复合光催化剂;Bi2WO6与ZIF-67的结合有效促进了光生电子空穴对的分离,提高了复合材料的光催化效率。在可见光条件下,Bi2WO6/ZIF-67光催化反应速率常数分别是Bi2WO6和ZIF-67的4.53倍和5.87倍。自由基捕获实验证明,光催化过程中,空穴(h+)、超氧自由基(·O2-)和羟基自由基(·OH)为主要活性物种。通过对光催化反应过程中光生电子及空穴传递过程进行分析发现,Bi2WO6/ZIF-67的光催化反应过程属于Z型光催化体系的反应机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常娜
陈彦如
谢锋
王海涛2
关键词:  光催化  钨酸铋  ZIF-67  金属有机骨架  盐酸四环素    
Abstract: Flower-like Bi2WO6 microspheres were prepared via the hydrothermal method, and ZIF-67 nanoparticles were loaded on the surface of Bi2WO6 microspheres to prepare Bi2WO6/ZIF-67 composite photocatalyst. XRD, XPS, FTIR and SEM were used to characterize the structure, surface groups and morphology of the composite photocatalyst. The photochemical and electrochemical properties of the composite photocatalyst were investigated by measuring UV-Vis spectra, photoluminescence spectra, electrochemical impedance spectra and transient photocurrent. Degradation of tetracycline hydrochloride by the composite photocatalyst was tested under visible light irradiation. Results revealed that ZIF-67 nanoparticles were loaded uniformly on the surface and cracks of Bi2WO6. The combination of Bi2WO6 and ZIF-67 effectively increased the separation efficiency of photo-induced electron-hole pairs and further improved the photocatalytic performance of the composite photocatalyst. Under visible light irradiation, the photocatalytic reaction rate of Bi2WO6/ZIF-67 was 4.53 times and 5.87 times as high as that of Bi2WO6 and ZIF-67, respectively. Free radical capture experiments indicated that holes (h+), superoxide radical (·O2-) and hydroxyl radicals (·OH) were the main active species in the photocatalytic degradation process. Photocatalytic mechanism was also proposed, and the photocatalytic reaction of Bi2WO6/ZIF-67 catalyst was attributed to the Z-scheme photocatalytic mechanism.
Key words:  photocatalysis    Bi2WO6    ZIF-67    metal-organic framework    tetracycline hydrochloride
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TQ032  
基金资助: 国家重点研发计划项目(2019YFC0408400);天津市科技计划项目(19PTZWHZ00030;19YFSLQY00060;19YFZCSF01110)
通讯作者:  wanghaitao@tiangong.edu.cn   
作者简介:  常娜,2012年6月毕业于南开大学化学专业,获博士学位,现任天津工业大学化学工程与技术学院教授、博士研究生导师,天津工业大学印染废水资源化利用中外联合研究中心副主任。主要从事新型纳米材料合成及催化性能研究、高性能分离膜制备以及工业废水处理及资源化利用研究。主持国家重点研发项目子课题、国家自然科学基金、天津市重化工业节能减排科技重大专项、天津市自然科学基金项目等科研项目10余项;以第一作者或通讯作者发表论文30余篇;授权发明专利2项。
王海涛,2010年6月毕业于天津工业大学膜科学与技术专业,获博士学位,现任天津工业大学环境科学与工程学院教授、博士研究生导师。主要从事新型膜材料、光催化材料以及工业废水处理及资源化利用研究。主持国家重点研发计划、天津市生态环境治理科技重大专项、国家自然科学基金以及中央引导地方科技发展专项资金等项目10余项;以第一作者或通讯作者发表论文20余篇。
引用本文:    
常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
CHANG Na, CHEN Yanru, XIE Feng, WANG Haitao. Preparation and Photocatalytic Performance of Bi2WO6/ZIF-67 Composite Photocatalyst. Materials Reports, 2022, 36(8): 21010028-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010028  或          http://www.mater-rep.com/CN/Y2022/V36/I8/21010028
1 Zhang G, Zhang X, Meng Y, et al. Chemical Engineering Journal,2020,392,123684.
2 Guan W, Gao X, Ji G, et al. Journal of Solid State Chemistry,2017,255,150.
3 Wen X J, Shen C H, Fei Z H, et al. Chemical Engineering Journal,2020,383,123083.
4 Zhang L H, Zhu Y, Lei B R, et al. Inorganic Chemistry Communications,2018,94,27.
5 Zhao F, Liu Y, Hammouda S B, et al. Applied Catalysis B: Environmental,2020,272,119033.
6 Yan D, Hu H, Gao N, et al. Applied Surface Science,2019,498,143836.
7 Shao W, Chen Y R, Xie F, et al. RSC Advances,2020,10,38174.
8 Zhu G, Feng S, Chao J, et al. Ceramics International,2020,46,2530.
9 Chen J, Zhang X, Shi X, et al. Journal of Colloid and Interface Science,2020,579,37.
10 Jiang W, Li Z, Liu C, et al. Journal of Alloys and Compounds,2021,854,157166.
11 Wang J, Liang H, Zhang C, et al. Applied Catalysis B: Environmental,2019,256,117874.
12 Cai C, Wang C, Zhang C, et al. Materials Letters,2020,259,126851.
13 Guo X, Wu D, Long X, et al. Materials Characterization,2020,163,110297.
14 Xiao L, Lin R, Wang J, et al. Journal of Colloid and Interface Science,2018,523,151.
15 Meng X, Qin H, Zhang Z. Journal of Colloid and Interface Science,2018,513,877.
16 Wang R, Xu M, Xie J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,602,125048.
17 Li G, Wang Y, Huang R, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,603,125256.
18 Yin S, Chen Y, Gao C, et al. Journal of Photochemistry and Photobiology A: Chemistry,2020,387,112149.
19 Chang N, Chen Y R, Xie F, et al. Microporous and Mesoporous Mate-rials,2020,307,110530.
20 Lei S, Yang C, Liao H, et al. Materials Research Bulletin,2021,133,111075.
21 Tian L, Yang X, Liu Q, et al. Applied Surface Science,2018,455,403.
22 Shang H, Xu H, Jin L, et al. Sensors and Actuators B: Chemical,2019,301,127060.
23 Zhu M T, Kurniawan T A, You Y, et al. Journal of Environmental Management,2020,270,110839.
24 Gong H, Zhang X, Wang G, et al. Molecular Catalysis,2020,485,110832.
25 Yu F, Nan D, Song T, et al. Materials Reports B: Recesearch Papers,2020,34(4),8003.
于富成,南冬梅,宋天云,等.材料导报:研究篇,2020,34(4),8003.
26 Gan W, Zhang J, Niu H, et al. Chemical Physics Letters,2019,737,136830.
27 Liu F, Thien-Phap N, Wang Q, et al. Applied Surface Science,2019,496,143653.
28 Xie Z, Feng Y, Wang F, et al. Applied Catalysis B: Environmental,2018,229,96.
29 Wang Q, Wang P, Xu P, et al. Applied Catalysis B: Environmental,2020,266,118653.
30 Zhang Y, Xie L, Zhou Y, et al. Progress in Chemistry,2016,28(10),1528.
张圆正,谢利利,周怡静,等.化学进展,2016,28(10),1528.
[1] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[2] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[3] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[4] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[5] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
[6] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[7] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[8] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[9] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[10] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[11] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[12] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[13] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[14] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[15] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed