Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7048-7055    https://doi.org/10.11896/cldb.20060084
  无机非金属及其复合材料 |
基于TiO2的光阳极材料应用于光催化燃料电池的研究进展
李金韩1, 余少彬1, 石梦童1, 汪长征1, 王强2
1 北京建筑大学建筑结构与环境修复功能材料北京市重点实验室,北京 100044
2 首都师范大学初等教育学院&微尺度功能材料实验室,北京 100048
Research Progress of TiO2-based Photoanode Materials for Photocatalytic Fuel Cells
LI Jinhan1, YU Shaobin1, SHI Mengtong1, WANG Changzheng1 WANG Qiang2
1 Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Laboratory for Micro-sized Functional Materials & College of Elementary Education, Capital Normal University, Beijing 100048, China
下载:  全 文 ( PDF ) ( 5453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光催化燃料电池利用太阳能在高效去除水中污染物的同时将其中的化学能转化为电能,达到回收能源的目的且不会产生二次污染。目前,光催化燃料电池在水环境处理及绿色能源开发中的应用十分广泛,但光阳极材料的选择与制备仍是制约其大规模应用的关键难题。TiO2作为目前最热门的n型半导体材料,因其光催化活性高、成本低、热稳定性好等优点受到了广泛关注。TiO2纳米管阵列、TiO2薄膜材料比表面积大,活性位点多,容易与其他单质和化合物复合,在光催化燃料电池中有广阔的应用前景。国内外学者已经研究了许多有效的策略来提高TiO2的光催化性能,如贵金属沉积、金属与非金属元素掺杂等。本文介绍了TiO2纳米管阵列、TiO2薄膜光阳极材料的制备及改性,简述了其降解污染物的效率和产电性能,总结了结构、组成等因素对光催化燃料电池性能的影响,以期为制备性能良好的光催化燃料电池提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金韩
余少彬
石梦童
汪长征
王强
关键词:  TiO2  纳米管阵列  纳米薄膜  光催化燃料电池  水处理    
Abstract: Photocatalytic fuel cells employ solar energy to efficiently remove organic pollutants in water while converting chemical energy into electrical energy, which can thus achieve the dual purpose of energy recovery and pollutants removal. Currently, photocatalytic fuel cells are extensively used in water environment treatment and green energy. However, the selection and preparation of photoanode still remain key problem which restrict their large-scale applications. As one of the hot n-type semiconductor material, TiO2 has attracted considerable attention as photoanode due to its high photocatalytic activity, low cost, and good thermal stability. TiO2 nanotube arrays and TiO2 film materials, which have a large specific surface area, abundant active sites, have broad application prospects in photocatalytic fuel cells. Till now, great efforts have been made to enhance the photocatalytic performance of TiO2, such as precious metal deposition, metal and non-metal element doping. In the current review, we introduce the preparation method of TiO2 nanotube arrays and TiO2 film materials, and describe their pollutant degradation efficiency and electricity generation performance, and summarizes the influence of structure and composition on the performance of photocatalytic fuel cells. It is expected to provide a reference for the preparation of photocatalytic fuel cells with good performance.
Key words:  TiO2    nanotube array    nano film    photocatalytic fuel cell    water treatment
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  X703  
基金资助: 水体污染控制与治理国家科技重大专项(2018ZX07110-008);北京建筑大学基本科研业务费项目(X18005)
作者简介:  李金韩,2019年6月毕业于北京建筑大学,获得工学学士学位。现为北京建筑大学环境与能源工程学院研究生,在汪长征和王强教授的指导下进行研究。目前主要研究领域为环境功能纳米材料。
汪长征,北京建筑大学教授。2008年7月毕业于北京师范大学获博士学位。在Adv. Mater.,App. Catal. B,ACS Appl. Mater. Interfaces等国内外学术期刊上发表论文60余篇。参与《国家节水型城市考核标准》《国家节水型城市申报与考核办法》等政府文件的编写工作,参编国家标准1项,行业标准1项,地方标准2项;获华夏建设科学技术奖一等奖1项,北京水务科技一等奖1项。
王强,首都师范大学教授、博士研究生导师、北京市优秀人才。2007年获得北京理工大学理学博士学位,2011—2012年美国杜克大学做访问学者,主要研究方向为无机纳米光催化及科学教育。在Nature、Journal of the American Chemical Society、ACS Nano、Applied Catalysis B: Environmental、Journal of Materials Chemistry A、Chinese Chemical Letters等杂志发表论文70余篇,主编教材两部,申请专利5项。
引用本文:    
李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
LI Jinhan, YU Shaobin, SHI Mengtong, WANG Changzheng WANG Qiang. Research Progress of TiO2-based Photoanode Materials for Photocatalytic Fuel Cells. Materials Reports, 2021, 35(7): 7048-7055.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060084  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7048
1 Dong Z, Ren Z, Thompson S J, et al. Chemical Review, 2017, 117, 9333.
2 Guo T, Yang F N, Wang C Z, et al. Technology of Water Treatment, 2017, 43(11), 8(in Chinese).
郭涛, 杨枫楠, 汪长征, 等. 水处理技术, 2017, 43(11), 8.
3 Logan B E, Hamelers B, René R, et al. Environmental Science & Technology, 2006, 40, 5181.
4 Lovley D R. Current Opinion in Biotechnology, 2008, 19, 564.
5 Logan B E, Rabaey K. Science, 2012, 337, 686.
6 Li W W, Yu H Q, He Z. Environment Science & Technology, 2014, 7, 911.
7 Logan B E, Wallack M J, Kim K Y, et al. Environment Science & Technology Letters, 2015, 2, 206.
8 Song Y M, Xu S W, Song H, et al. Shandong Chemical Industry, 2019, 48(24), 211(in Chinese).
宋怡明, 徐少伟, 宋昊, 等. 山东化工, 2019, 48(24), 211.
9 Zhao J J. Shanxi Chemical Industry, 2020, 40(1), 24(in Chinese).
赵巾巾. 山西化工, 2020, 40(1), 24.
10 Fujishima A, Honda K. Nature, 1972, 238, 37.
11 Mo Q Y, Zeng F J, Zhang S, et al. Scientific and Technological Innovation Information, 2018(30), 79(in Chinese).
莫秋燕, 曾凡菊, 张颂, 等. 科学技术创新, 2018(30), 79.
12 Wang S M, Li D L, Sun C, et al. Applied Catalysis B: Environmental, 2014, 144, 885.
13 Ansari S A, Khan M M, Ansari M O, et al. Solar Energy Materials and Solar Cells, 2015, 141, 162.
14 Lian Z C, Wang W C, Xiao S N, et al. Scientific Reports, 2015, 5, 10461.
15 Wang Y, Yu J G, Xiao W. Journal of Materials Chemistry A, 2014, 2, 3847.
16 Sun L, Zhai J L, Li H Y, et al. ChemCatChem, 2014, 6, 339.
17 Chen J R, Qiu F X, Zhang Y, et al. Applied Surface Science, 2015, 356, 553.
18 Jiang Z F, Jiang D L, Yan Z X, et al. Applied Catalysis B: Environmental, 2015, 170-171, 195.
19 Xu J, Wu F, Jiang Q, et al. Journal of Molecular Catalysis A: Chemical, 2015, 403, 77.
20 Liang C, Wu Y Q, Wang D W, et al. Materials Reports, 2019, 33(S2), 267(in Chinese).
梁辰, 吴艳青, 王大伟, 等. 材料导报, 2019, 33(S2), 267.
21 Su D, Dou S, Wang G. Chemistry of Materials, 2015, 27, 6022.
22 Huang L, Wang J, Zhu Y, et al. Journal of Alloys and Compounds, 2019, 8, 925.
23 Li X T, Wang J, Guo Y, et al. China Ceramic Industry, 2020, 27(1), 30(in Chinese).
李孝通, 王竞, 郭玉, 等. 中国陶瓷工业, 2020, 27(1), 30.
24 Chen W, Zhou P, Guo L, et al. Materials Research and Application, 2020, 14(1), 68(in Chinese).
陈文, 周鹏, 郭鲤, 等. 材料研究与应用, 2020, 14(1), 68.
25 Wu N, Dong Y H, Ji X Y, et al. CIESC Journal, 2020, 71(2), 831(in Chinese).
吴娜, 董依慧, 吉晓燕, 等. 化工学报, 2020, 71(2), 831.
26 Xia B, Yao J J, Han C X, et al. Chemicke Zvesti, 2018, 72, 359.
27 Chen X Y, Yao J J, Xia B, et al. Journal of Hazardous Materials,2020, 383, 121220.
28 Li N, Tang S F, Rao Y D, et al. Electrochimica Acta, 2018, 270, 330.
29 Liu X H, Xing Z H, Chen Q Y, et al. Chemosphere, 2019, 237, 124457.
30 Ye Y, Bruning H, Li X L, et al. Chemical Engineering Journal, 2018, 354, 553.
31 Wang J Q, Liu D, Zhou J, et al. Journal of East China Normal University (Natural Science), 2020(1), 93(in Chinese).
王剑桥, 刘冬, 周君, 等. 华东师范大学学报(自然科学版), 2020(1), 93.
32 Li J Y. Study on TiO2/Ti-Cu2O/Cu based photocatalytic fuel cell. Master's Thesis, Shanghai Jiao Tong University, China, 2014(in Chinese).
李建勇. TiO2/Ti-Cu2O/Cu光催化废水燃料电池的设计与性能研究. 硕士学位论文, 上海交通大学, 2014.
33 Liu Y B. Photo (electro) catalytic degradation of organic pollutants by novel electrode materials and comprehensive utilization of the chemical energy of pollutants. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2011(in Chinese).
刘艳彪. 新型电极材料光/电催化降解有机污染物及污染物化学能的综合利用.博士学位论文, 上海交通大学, 2011.
34 Li D Y, Zhang W T, Zhang C. Materials Reports B: Research Papers, 2019, 33(12), 3900(in Chinese).
李大玉, 张文韬, 张超. 材料导报:研究篇, 2019, 33(12), 3900.
35 Yang J W. Master's Thesis, Huazhong University of Science and Techno-logy, China, 2016(in Chinese).
杨婧薇. 基于TiO2纳米管的可见光型光催化废水燃料电池. 硕士学位论文, 华中科技大学, 2016.
36 Xiong J L, Li T, Liu H, et al. Science Technology and Engineering,2017, 17(18), 126(in Chinese).
熊金磊, 李亭, 刘浩, 等. 科学技术与工程, 2017, 17(18), 126.
37 Chu Y C. Preparation of photocatalytic fuel cell based on BiVO4/TiO2 NT and Cu2O/TiO2 NT and its performance. Masters Thesis, Northeast Normal University. China, 2019(in Chinese).
初义聪. 基于BiVO4/TiO2 NT和Cu2O/TiO2 NT的双极光催化燃料电池设计制备及性能研究. 东北师范大学, 2019.
38 Bai J, Wang R, Li Y P, et al. Journal of Hazardous Materials, 2016, 311, 51.
39 Wang R. Preparation of heterojunction photoelectrode and its application in photocatalytic wastewater fuel cell. Masters Thesis, Shanghai Jiao Tong University, China, 2017(in Chinese).
王芮. 异质结光电极的制备及其在光催化废水燃料电池中的应用. 上海交通大学, 2017.
40 Wu M Y. The application of metal modified TiO2 nanotube arrays on photoelectrocatalytic reduction of Cr(Ⅵ). Master's Thesis, Harbin Engineering University, China, 2015(in Chinese).
吴梦瑶. 金属改性TiO2纳米管阵列光电催化还原Cr(Ⅵ)的研究.哈尔滨工程大学, 2015.
41 Yang F N. The application of TiO2 composite nano-array to photocatalytic fuel cell. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2019(in Chinese).
杨枫楠. TiO2复合纳米阵列用于光催化燃料电池的研究. 北京建筑大学, 2019.
42 Ghicov A, Macak J M, Tsuchiya H, et al. Chemical Physics Letters, 2006, 419, 426.
43 Quan X, Yang S G, Ruan, X L, et al. Environmental Science and Technology, 2005, 39, 3770.
44 Xu Y. Research on electricity production and the efficiency of the degradation of carbamazepine based on N, F doped TiO2 NTs anode photocatalytic fuel cell. Master's Thesis, Chongqing University, China, 2016(in Chinese).
徐洋. 基于N, F掺杂TiO2 NTs阳极的光催化燃料电池产电及降解卡马西平的效能研究. 重庆大学, 2016.
45 Han C X. Research on the efficiency and mechanism of the degradation of ofloxacin based on UVA-LED/TiO2 anode photocatalytic fuel cell. Ma-ster's Thesis, Chongqing University, China, 2017(in Chinese).
韩晨曦. UVA-LED/TiO2纳米管阵列光催化燃料电池降解氧氟沙星效能研究. 重庆大学, 2017.
46 Xia Z L, Liu S M, Guo Y, et al. China Ceramic Industry, 2020, 27(1), 41(in Chinese).
夏泽林, 刘世民, 郭玉, 等. 中国陶瓷工业, 2020, 27(1), 41.
47 Lv Q. Preparation of visible light catalytic material and its application in degrading dye wastewater from fuel cells. Master's Thesis, Inner Mongolia University, China, 2019(in Chinese).
吕庆. 可见光催化材料制备及其在燃料电池降解染料废水中的应用. 硕士学位论文,内蒙古大学, 2019.
48 Daniyan A A, Umoru L E, Olunlade B. Journal of Minerals and Mate-rials Characterization and Engineering, 2013, 1, 138.
49 Yang D W, Yang P Z. Journal of Yunnan Normal University (Natural Sciences Edition), 2020, 40(2), 15(in Chinese).
杨德威,杨培志.云南师范大学学报(自然科学版),2020,40(2),15.
50 Kania A, Nolbrzak P, Radoń A, et al. Materials (Basel, Switzerland), 2020, 13, 1065.
51 Yang K, He C, Xu W, et al. Industrial Water Treatment, 2019, 39(3), 80(in Chinese).
杨开, 何琛, 徐伟, 等. 工业水处理, 2019, 39(3), 80.
52 Li K, Zhang H B, Tang T T, et al. Water Research, 2014, 62, 1.
53 Lin S Z, Wang S H. Journal of Northeast Electric Power University, 2016, 36(3), 69(in Chinese).
林松竹, 王守航. 东北电力大学学报, 2016, 36(3), 69.
54 Fu S Z, Deng B Q, Ma D M, et al. ChemEngineering, 2018, 2, 20.
55 Kee M W, Lam S M, Sin J C, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112353.
56 Lam S M, Sin J C, Lin H, et al. Chemosphere, 2020, 245, 125565.
57 Yang C, He Y, Li K, et al. Catalysts, 2016, 6, 114.
58 Yang K, Xu Y L, Zhong D J. Environmental Chemistry, 2018, 37(1), 108(in Chinese).
杨开, 徐云兰, 钟登杰. 环境化学, 2018, 37(1), 108.
59 Liu J, Xia M, Chen R, et al. Separation & Purification Technology, 2019, 229, 115821.
60 Kané R, Liu L F, Noor A N, et al. Electrochimica Acta, 2019, 298, 430.
[1] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[2] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[3] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[4] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[5] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[6] 张理元, 尤佳, 钟雅洁, 董志红, 韩炎霖, 孙绪兵, 由耀辉1,2,. CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响[J]. 材料导报, 2020, 34(24): 24014-24018.
[7] 王薇, 刘竟成, 霍旺晨, 王均, 王芊卉. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 2020, 34(23): 23027-23032.
[8] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[9] 李义豪, 吴平霄, 姜璐, 吴沂晓. 高铁酸盐在环境修复中的应用综述[J]. 材料导报, 2020, 34(19): 19003-19009.
[10] 孙成祥, 李阳, 徐迟, 陆明月, 戴振东. 碳纳米管阵列仿生黏附受静电作用影响的研究进展[J]. 材料导报, 2020, 34(19): 19050-19060.
[11] 姚庆达, 温会涛, 杨长凯, 梁永贤, 王小卓, 但卫华. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058.
[12] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[13] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[14] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[15] 马立云, 汤永康, 鲍田, 金良茂, 甘治平, 李刚. 宽谱增透双层TiO2-SiO2/SiO2薄膜的制备与性能[J]. 材料导报, 2019, 33(Z2): 161-164.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed