Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19003-19009    https://doi.org/10.11896/cldb.19100238
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
高铁酸盐在环境修复中的应用综述
李义豪, 吴平霄, 姜璐, 吴沂晓
华南理工大学环境与能源学院,广州 510006
Progress on Application of Ferrate(Ⅵ) for the Environmental Remediation
LI Yihao, WU Pingxiao, JIANG Lu, WU Yixiao
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 3570KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高铁酸盐(Fe(Ⅵ))作为一种集氧化、消毒和混凝为一体的多功能试剂,在环境修复中得到广泛应用。本文主要介绍了Fe(Ⅵ)的合成、稳定性、纯度及其在环境修复中的一些应用,包括以下方面:(1)高铁酸盐的制备及特性分析。(2)pH对Fe(Ⅵ)反应动力学和污染物去除效率的影响,Fe(Ⅵ)处理有机物的最佳pH值范围往往取决于其与水和污染物之间的竞争反应速率。(3)围绕高铁酸盐的电子和氧原子转移途径,揭示了Fe(Ⅵ)氧化有机污染物的主要机制为1-e-、2-e-和氧原子转移;同时根据污染物的特性,Fe(Ⅵ)的还原产物Fe(Ⅴ)和Fe(Ⅳ)也可继续发生1-e-和2-e-电子转移,进一步与污染物反应;利用氰化物分析高铁酸盐的氧化性能为Fe(Ⅴ)>Fe(Ⅳ)>Fe(Ⅵ)。(4)Fe(Ⅵ)不仅可以氧化微生物的细胞壁、原生质、DNA和其他重要器官,达到灭菌消毒的效果,同时其还原产物Fe(Ⅲ)还可以吸附水体中的微生物、胶体颗粒和重金属,达到净水效果。(5)大多数EDCs和PPCPs与Fe(Ⅵ)的反应活性归因于Fe(Ⅵ)对污染物特定基团的电子转移。(6)Ames和斑马鱼胚胎死亡试验表明,高铁酸盐的氧化产物并不会对水体造成二次污染。上述特性使得Fe(Ⅵ)处理一些新出现的毒素和污染物成为可能,其为21世纪的净水工程提供了一种绿色高效的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李义豪
吴平霄
姜璐
吴沂晓
关键词:  高铁酸盐  水处理  氧化  消毒  混凝    
Abstract: Ferrate (Fe(Ⅵ)) has been widely employed due to its oxidant/disinfectant and further utilization of the ensuing Fe(Ⅲ) oxides/hydroxide as coagulants in environmental remediation. Therefore, this review diverse synthesis recipes for Fe(Ⅵ) and their associated physicochemical properties as oxidants, coagulants, and disinfectants for the elimination of a diverse range of chemical and biological species from water/wastewater samples. These introduces involve: (1) Preparation and characteristics of ferrate. (2) The role of pH in the kinetics of the reactions and in determining the removal efficiency of pollutants is highlighted; the rates of competing reactions of Fe(Ⅵ) with itself, water, and the contaminants, which are highly pH dependent, determine the optimum pH ranges of maximum efficacy. (3) Oxidation mechanism of Fe(Ⅵ) through 1-e- and 2-e- transfer processes and further reactions of Fe(Ⅴ) and Fe(Ⅳ) with contaminants; the reduction products Fe(Ⅴ) and Fe(Ⅳ) can continue to react with pollutants through 1-e- and 2-e- electron transfer; cyanide has been studied for the comparative oxidizing capability of ferrates in various oxidation states. The result suggests the rates for the reactivity of ferrates with cyanide to be Fe(Ⅴ)>Fe(Ⅳ)>Fe(Ⅵ). (4) Fe(Ⅵ) can oxidize cell wall, protoplasm, DNA and other vital microorganism organs which kills them immediately. Meanwhile, Fe(Ⅵ) is gradually converted to Fe(Ⅲ) which is a strong coagulant, therefore, colloidal particles including the microorganisms are coagulated and removed from the water. (5) The high reactivity of most EDCs and PPCPs with ferrate(Ⅵ) may be attributed to electron donation by the specific group to the naphthalene moiety. (6) Ames and zebrafish embryos test indicate that Fe(Ⅵ) do not produce mutagenic by products for the study conditions. These results will make it possible to unlock the true potential of ferrates for degrading emerging toxins and pollutants, and in the purified and potable water for humanity in the 21st.
Key words:  ferrate    water remediation    oxidant    disinfection    coagulants
                    发布日期:  2020-11-05
ZTFLH:  X703  
基金资助: 国家自然科学基金(41673092;41472038);广东省科技计划项目(2016B020242004);广州市科技计划项目(201604020064);广东特支计划百千万工程领军人才项目(201626011)
通讯作者:  pppxwu@scut.edu.cn   
作者简介:  李义豪,2017年3月毕业于东华大学,获得工学硕士学位。现为华南理工大学环境与能源学院博士研究生,在吴平霄教授的指导下进行研究。目前主要研究方向为高铁酸盐在环境修复中的应用。
吴平霄,华南理工大学环境与能源学院教授、博士研究生导师。1990年毕业于南京大学,获得学士学位。 1995年毕业于中国地质大学(武汉),获得硕士学位。1998年毕业于中国科学院广州地球化学研究所,获得博士学位。先后入选教育部“新世纪优秀人才”、第12届“侯德封矿物岩石地球化学青年科学家奖”和广东特支计划百千万工程领军人才。主要从事功能化粘土矿物在环境中应用的研究工作。近年来,在环境材料领域发表论文百余篇,包括Applied Catalysis B: Environmental、Environment International、Journal of Hazardous Materials、Chemical Engineering Journal和Science of the Total Environment等。
引用本文:    
李义豪, 吴平霄, 姜璐, 吴沂晓. 高铁酸盐在环境修复中的应用综述[J]. 材料导报, 2020, 34(19): 19003-19009.
LI Yihao, WU Pingxiao, JIANG Lu, WU Yixiao. Progress on Application of Ferrate(Ⅵ) for the Environmental Remediation. Materials Reports, 2020, 34(19): 19003-19009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100238  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19003
1 Sharma V K, Zboril R, Varma R S. Accounts of Chemical Research,2015,48(2),182.
2 Jiang J Q. Journal of Hazardous Materials,2007,146(3),617.
3 Ghernaout D, Naceur M W. Desalination and Water Treatment,2011,30(1-3),319.
4 Yates B J, Zboril R, Sharma V K. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2014,49(14),1603.
5 Deng J, Wu H D, Wang S J, et al. Environmental Technology,2019,40(12),1585.
6 Jiang J Q, Lloyd B. Water Research,2002,36(6),1397.
7 Chen J, Qi Y M, Pan X X, et al. Water Research,2019,158,338.
8 Sharma V K. Coordination Chemistry Reviews,2013,257(2),495.
9 Yang T, Wang L, Liu Y, et al. Environmental Science & Technology,2018,52(22),13325.
10 Luo C, Feng M, Sharma V K, et al. Environmental Science & Technology,2019,53(9),5272.
11 Ghosh M, Manoli K, Renaud J B, et al. Chemosphere,2019,230,416.
12 He H, Liu Y, Wang X, et al. Chemical Engineering Journal,2018,343,520.
13 Xie Sitao, Wu Kehong, Tang Zhijian. Journal of Environment and Health,2001,18(3),190(in Chinese).
谢思桃,吴克宏,唐志坚.环境与健康杂志,2001,18(3),190.
14 Stahl G E. Halae-Magdeburgiae,1702,742.
15 Fremy E C R. Académie des Sciences, Paris,1841,12,23.
16 Thompson G W, Ockerman L T, Schreyer J M. Journal of the American Chemical Society,1951,73,1379.
17 Licht S, Wang B H, Ghosh S. Science,1999,285(5430),1039.
18 Bouzek K, Rousar I. Journal of Applied Electrochemistry,1997,27(6),679.
19 Bouzek K, Schmidt M J, Wragg A A. Electrochemistry Communications,1999,1(9),370.
20 Wood R H. Journal of the American Chemical Society,1958,80(9),2038.
21 Nowik I, Herber R H, Koltypin M, et al. Journal of Physics and Chemistry of Solids,2005,66(7),1307.
22 Ettl V, Veprek-Siska J. Collection of Czechoslovak Chemical Communications,1969,34,2182.
23 Gai Y C. In: The 4th Joint China/Japan Chemical Engineering Sympo-sium. Chengdu, China,2007,pp.19.
24 Gai Yongcai. Preparation of potassium ferrate(VI) and its application in DNBP treatment. Master's Thesis, Dalian University of Technology, China,2008(in Chinese).
盖永才,高铁酸盐的合成及在氧化降解DNBP中的应用.硕士学位论文,大连理工大学,2008.
25 Schreyer J M, Thompson G W, Ockerman L T. Journal of the American Chemical Society,1950,22,1426.
26 Sharma V K. Abstracts of Papers of the American Chemical Society,2000,219,U619.
27 Venkatadri A S, Wagner W F, Bauer H H. Analytical Chemistry,1971,43,1115.
28 Macova Z, Bouzek K, Hives J, et al. Electrochimica Acta,2009,54(10),2673.
29 Licht S, Naschitz V, Halperin L, et al. Journal of Power Sources,2001,101(2),167.
30 Luo Z, Strouse M, Jiang J Q, et al. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2011,46(5),453.
31 Lee Y, Cho M, Kim J Y, et al. Journal of Industrial and Engineering Chemistry,2004,10(1),161.
32 Lee Y, Yoon J, Von G U. Water Research,2005,39(10),1946.
33 Mura S, Malfatti L, Greppi G, et al. Reviews in Environmental Science and Bio-Technology,2017,16(1),15.
34 Huang R F, Wang C J, Chelme-Ayala P, et al. Science of the Total Environment,2019,672,906.
35 Sharma V K, Rendon R A, Millero F J, et al. Marine Chemistry,2000,70(1-3),235.
36 Sharma V K, Burnett C R, O'Connor D B. Abstracts of Papers of the American Chemical Society,2000,220,U359.
37 Sharma V K. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2010,45(6),645.
38 Sharma V K, Graham N J D, Li X Z, et al. Environmental Science and Pollution Research,2010,17(2),453.
39 Sharma V K, Rivera W, Joshi V N, et al. Environmental Science & Technology,1999,33(15),2645.
40 Sharma V K. Journal of Environmental Management,2011,92(4),1051.
41 Lee Y, Zimmermann S G, Kieu A T, et al. Environmental Science & Technology,2009,43(10),3831.
42 Wang H, Zhang R, Li H, et al. Water Environment Research : a Research Publication of the Water Environment Federation,2019,91(7),628.
43 Aryal M, Ziagova M M. Liakopoulou K. Chemical Engineering Journal,2011,169(1-3),100.
44 Xie X, Cheng H. Environment International,2019,127,730.
45 Huang Z S, Wang L, Liu Y L, et al. Environmental Science & Technology,2018,52(23),13897.
46 Jiang Y, Goodwill J E, Tobiason J E, et al. Environmental Science & Technology,2015,49(5),2841.
47 Talaiekhozani A, Fulazzaky M A, Ponraj M, et al. Desalination and Water Treatment,2014,52(19-21),3663.
48 Robinson R K. Water Research,1974,8,543.
49 Talaiekhozani A, TalaeiS M R, Rezania S. Journal of Environmental Chemical Engineering,2017,5(2),1828.
50 Mattice J S, Zittel H E. Journal-Water Pollution Control Federation,1976,48(10),2284.
51 Rai P K, Lee J, Kailasa S K, et al. Environmental Research,2018,160,420.
52 Jiang J Q. In: 2013 International Symposium on Environmental Science and Technology. Dalian, China,2013.
53 Lee Y, Von G U. Water Research,2010,44(2),555.
54 Lee Y, Yoon J, Von G U. Environmental Science & Technology,2005,39(22),8978.
55 Vanden B K, Verheyen R, Witters H. Science of the Total Environment,2003,309(1-3),127.
56 Sharma V K, Sohn M, Anquandah G A K, et al. Chemosphere,2012,87(6),644.
57 Shao B, Dong H, Sun B, et al. Environmental Science & Technology,2019,53,894.
[1] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[2] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[3] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[4] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[5] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[6] 居殿春, 武兆勇, 张荣良, 王海风, 王锋, 严定鎏. 微波加热Mg-TiO2混合物的研究[J]. 材料导报, 2020, 34(Z1): 140-143.
[7] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[8] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[9] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[10] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[11] 李义强, 李智, 赵斌, 刘磊, 蓝群力, 张新天, 卞立波. 多孔质混凝土植被恢复组合结构与材料性能研究[J]. 材料导报, 2020, 34(Z1): 199-202.
[12] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[13] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[14] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[15] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed