Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7042-7047    https://doi.org/10.11896/cldb.19080007
  材料与可持续发展(四)--材料再制造与废弃物料资源化利用* |
8YSZ-Al2O3复合热障涂层研究进展
鲁发章, 刘海韬, 黄文质
国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
A Review of 8YSZ-Al2O3 Composite Thermal Barrier Coatings
LU Fazhang, LIU Haitao, HUANG Wenzhi
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 2635KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热障涂层可以为航空发动机等高温部件提供热防护,对延长其使用寿命具有重要意义。近年来高温部件的使用温度不断提升,对热障涂层的耐温性也提出了更高的要求。长时间高温热循环后,常规热障涂层容易出现开裂、剥落等失效行为,直接影响航空发动机的安全性和可靠性。8YSZ作为经典的热障涂层材料,具有优异的抗热震和隔热性能。但8YSZ致密度较低,涂层中存在较多的空隙和缺陷,其高温抗氧化和耐高温熔盐腐蚀等性能仍有较大的改进空间。而Al2O3作为常用的陶瓷涂层材料,致密度高、力学性能出色,但过小的热膨胀系数使其无法单独用作热障涂层材料。通过对比可以发现,8YSZ和Al2O3的性能具有较好的互补性。基于8YSZ和Al2O3各自的性能优势,研究者们开始将Al2O3引入8YSZ制备8YSZ-Al2O3复合涂层,探索将复合涂层用作热障涂层的可行性。研究发现,Al2O3的加入使8YSZ-Al2O3复合涂层中产生无定形相,无定形相的含量、重结晶与其耐温性能紧密相关。随着Al2O3含量的增加,复合涂层的微观结构变得更加致密,其杨氏模量和硬度等力学性能也呈增加趋势。引入Al2O3可以有效调节8YSZ涂层的微观结构和力学性能。受此影响,复合涂层的抗氧化和耐熔盐腐蚀等性能有较为明显的提高,但其抗热循环性能仍需进一步优化。本文按照复合涂层微观结构与力学性能调控、制备工艺与结构优化和高温应用的顺序重点介绍了8YSZ-Al2O3复合涂层的研究现状,阐述了其相对传统8YSZ涂层的主要优点及不足,并简要展望了未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁发章
刘海韬
黄文质
关键词:  8YSZ-Al2O3复合涂层  微观结构  性能调控  高温应用    
Abstract: Thermal barrier coatings (TBCs) can provide thermal protection for high-temperature parts such as aeroengine, which is of great significance to improve its service life. In recent years, the thermal resistance requirements of the TBCs are constantly improving with the rapid development of the aeroengine. After a long thermal cycles, traditional TBCs are prone to crack and peel, which directly affects the safety and reliability of the aeroengine. As we all known, 8YSZ coatings have excellent thermal shock resistance and thermal insulation performance. However, the thermal oxidation and corrosion resistance of 8YSZ coatings still have great room for improvement due to the formation of many voids and defects during spraying process. As a common ceramic coating material, Al2O3 has high compactness and excellent mechanical properties, but its thermal expansion coefficient is too small to be used as TBCs alone. It can be found that the properties of 8YSZ and Al2O3 are complementary. Based on the perfor-mance advantages of each other, researchers began to introduce Al2O3 into 8YSZ to prepare 8YSZ-Al2O3 composite coatings to exploring the feasibility of using the composite coatings as the candidate for TBCs. The results show that the addition of Al2O3 results in the formation of amorphous phase in 8YSZ-Al2O3 composite coatings. The content of amorphous phase and its recrystallization are closely related to the thermal resistance of coatings. With the increase of Al2O3 content, the microstructure of the composite coatings becomes more compact, the young's modulus and hardness also show an increasing trend. Thus, Al2O3 can effectively adjust the microstructure and mechanical properties of 8YSZ coatings. As a result, the thermal oxidation and corrosion resistance of the composite coatings are obviously improved compared with the 8YSZ coatings, but its thermal cycle resistance still needs to be further optimized. In this paper, the research progress of the 8YSZ-Al2O3 composite coatings are mainly introduced according to the order of microstructure, mechanical properties, preparation process and high-temperature applications. The main advantages and disadvantages of the composite coatings compared with traditional 8YSZ coatings are described, and its future development trend is also prospected.
Key words:  8YSZ-Al2O3 composite coatings    microstructure    property modulation    high-temperature applications
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TQ174  
基金资助: 湖南省自然科学基金(2019JJ40337)
引用本文:    
鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
LU Fazhang, LIU Haitao, HUANG Wenzhi. A Review of 8YSZ-Al2O3 Composite Thermal Barrier Coatings. Materials Reports, 2021, 35(7): 7042-7047.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080007  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7042
1 Padture N P, Gell M, Jordan E H. Science, 2002, 296, 280.
2 Gurrappa I, Sambasiva R A. Surface & Coatings Technology, 2006, 201, 3016.
3 Morumpalle Sai Sahith, G Giridhara, R Suresh Kumar. Materials Today, 2018, 5, 2746.
4 Hua J J, Zhang Z P, Liu Z W, et al. Journal of Inorganic Materials, 2012, 27(7), 680(in Chinese).
华佳捷, 张丽鹏, 刘紫微, 等. 无机材料学报, 2012, 27(7), 680.
5 Zhu W, Zhang Z B, Yang L, et al. Materials & Design, 2018, 146, 180.
6 Thakare J G, Pandey C, Mulik R S, et al. Ceramic International, 2018, 44, 6980.
7 Zhang Y L, Guo L, Yang Y P, et al. Chinese Journal of Aeronautics, 2012, 25, 948.
8 Pidani R A, Razavi R S, Mozafarinia R, et al. Advanced Materials Research, 2012, 472-475, 141.
9 Matsumoto M, Aoyama K, Matsubara H, et al. Surface & Coatings Technology, 2005, 194, 31.
10 Yuan J Y, Sun J B, Wang J S, et al. Journal of Alloys and Compounds, 2018, 740, 519.
11 Zambrano D F, Barrios A, Tobón L E, et al. Ceramic International, 2018, 44, 3625.
12 Jing F, Ren X, Wang X, et al. Scripta Materialia, 2012, 66, 41.
13 Lu Z, Myoung S W, Kim E H, et al. Materials Today, 2014, 1, 35.
14 Girolamo G D, Brentari A, Blasi C, et al. Ceramic International, 2014, 40, 12861.
15 Shakhova I, Mironov E, Azarmi F, et al. Ceramic International, 2017, 43, 15392.
16 Deng W, Li S J, Hou G L, et al. Ceramic International, 2017, 43, 6976.
17 Tarasi F, Medraj M, Dolatabadi A, et al. Surface & Coatings Technology, 2011, 205, 5437.
18 Tarasi F, Medraj M, Dolatabadi A, et al. Journal of European Ceramic Society, 2011, 31, 2903.
19 Suffner J, Hahn H, Dosta S, et al. Surface & Coatings Technology, 2009, 204, 149.
20 Tarasi F, Medraj M, Dolatabadi A, et al. Advanced Functional Mate-rials, 2011, 21, 4143.
21 Tarasi F, Medraj M, Dolatabadi A, et al. Journal of America Ceramic Society, 2012, 95, 2614.
22 Kim H J, Kim Y J. Journal of Materials Science, 1999, 34, 29.
23 Song X M, Suhonen T, Varis T, et al. Journal of Thermal Spray Techno-logy, 2014, 23, 1302.
24 Andritschky M, Cunha I, Alpuim P. Surface & Coatings Technology, 1997, 144, 94.
25 Nazarpour S, Ramos F M, Cirera A, et al. Journal of Alloys and Compounds, 2010, 505, 527.
26 Liang B, Liao H L, Ding C X, et al. Thin Solid Films, 2005, 484, 225.
27 He K, Chen J J, Li Q, et al. Vacuum, 2018, 151, 209.
28 Liang B, Ding C X. Surface & Coatings Technology, 2005, 197, 185.
29 Liang B, Zhang G, Liao H L, et al. Surface & Coatings Technology, 2009, 203, 3235.
30 Nazarpour S, Ramos F M, Cirera A, et al. Journal of Alloys and Compounds, 2010, 505, 534.
31 Yu Q H, Zhou C G, Zhang H Y, et al. Journal of the European Ceramic Society, 2010, 30, 889.
32 Suffner J, Sieger H, Hahn H, et al. Materials Science and Engineering A, 2009, 506, 180.
33 Song X M, Liu Z W, Kong M G, et al. Ceramics International, 2017, 43, 14321.
34 Vasiliev A L, Padture N P, Ma X Q. Acta Materialia, 2006, 54(18), 4913.
35 Vasiliev A L, Padture Nitin P, Ma X Q. Acta Materialia, 2006, 54(18), 4921.
36 Cao X Q. New materials and structures of thermal barrier coatings, Science Press, China, 2016(in Chinese).
曹学强. 热障涂层新材料和新结构, 科学出版社, 2016.
37 Keyvani A, Saremi M, Sohi M H. Surface & Coatings Technology, 2011, 206, 208.
38 Jamali H, Mozafarinia R, Razavi R S, et al. Current Nanoscience, 2012, 8, 402.
39 Jamali H, Mozafarinia R, Razavi R S, et al. Journal of the European Ceramic Society, 2014, 34, 485.
40 Bai Y, Lee S W, Chen H, et al. Materials and Manufacturing Processes, 2011, 26, 330.
41 Bai Y, Yu F L, Lee S W, et al. Materials and Manufacturing Processes, 2012, 27, 58.
42 Tarasi F, Medraj M, Dolatabadi A, et al. Surface & Coatings Technology, 2013, 220, 191.43 Saremi M, Afrasiabi A, Kobayashi A. Surface & Coatings Technology, 2008, 202, 3233.
44 Limarga A M, Widjaja S, Yip T H. Surface & Coatings Technology, 2005, 197, 93.
45 Afrasiabi A, Saremi M, Kobayashi A. Materials Science and Engineering A, 2008, 478, 264.
46 Keyvani A, Saremi M, Sohi M H. Journal of Alloys and Compounds, 2010, 506, 103.
47 Keyvani A, Saremi M, Sohi M H. Journal of Alloys and Compounds, 2011, 509, 8370.
48 Sathish S, Geetha M. Transactions of Nonferrous Metals Society of China, 2016, 26, 1336.
49 Shanmugavelayutham G, Kobayashi A. Materials Chemistry and Physics, 2007, 103, 283.
50 Saremi M, Valefi Z. Ceramics International, 2014, 40, 13453.
51 Saremi M, Valefi Z, Abaeian N. Surface & Coatings Technology, 2013, 221, 133.
52 Fox A C, Clyne T W. Surface & Coatings Technology, 2004, 184, 311.
53 Wang J S, Sun J B, Zhang H, et al. Journal of Alloys and Compounds, 2018, 730, 471.
54 Zhang J L, Kobayashi A. Vacuum, 2009, 83, 92.
55 Keyvani A, Saremi M, Sohi M H. Journal of Alloys and Compounds, 2014, 600, 151.
56 Keyvani A. Journal of Alloys and Compounds, 2015, 623, 229.
57 Karabaş M, Bal E, Taptik Y. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 859.
58 Saral U, Toplan N. Surface Engineering, 2009, 25(7), 541.
59 Lu F Z, Huang W Z, Liu H T. Journal of Thermal spray Technology, 2019, 28, 1893.
60 Lu F Z, Huang W Z, Liu H T. Surface & Coatings Technology, 2020, 384, 125290.
61 Nath S, Manna I, Jha A K, et al. Ceramic International, 2017, 43, 11204.
62 Wenzelburger M, Escribano M, Gadow R. Surface & Coatings Technology, 2004, 180, 429.
63 Yu Q H, Rauf A, Zhou C G. Journal of Thermal Spray Technology, 2010, 19, 1294.
64 Jin L, Ni L Y, Zhou C G, et al. Ceramics International, 2012, 38, 2983.
[1] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[2] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[3] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[6] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[7] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[8] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[9] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[10] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[11] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[12] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[13] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[14] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[15] 郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed