Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24104-24108    https://doi.org/10.11896/cldb.19120164
  金属与金属基复合材料 |
应变速率对纯铝变形结构和取向的影响
王兵1,2, 乔及森1,2, 夏宗辉1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州730050
2 兰州理工大学材料科学与工程学院,兰州730050
Effect of Strain Rate on Deformation Structure and Orientation of Pure Aluminum
WANG Bing1,2, QIAO Jisen1,2, XIA Zonghui1,2
1 State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 5702KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 塑性变形诱导晶粒细化过程中存在着复杂的变形机制,但是当达到稳定态之后进一步变形不会细化材料的微观结构。研究表明,金属材料能够制备的最小晶粒尺寸的微观结构既取决于材料的层错能、晶体结构等内部属性,也受到应变、应变速率、变形温度等外部条件的影响。通过高应变速率(500~1 500 s-1)的霍普金森实验研究了1060工业纯铝在变形过程中微观结构和晶体取向差与应变速率之间的关系,微观结构和晶体取向分别用FEI Verios 460 SEM和FEI Nano SEM Nova 430进行表征。结果表明,随着应变速率的增加,晶粒尺寸明显得到细化,同时晶粒的择优取向增加;另外,材料形成了大量小角度晶界,并且硬度达到了430 MPa。因此,对高层错能低熔点的纯铝来说,常温条件下高应变速率能够促进小角度晶界的形成并且能够提升材料的硬度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王兵
乔及森
夏宗辉
关键词:  纯铝  高应变速率  微观结构  小角度晶界  硬度    
Abstract: During plastic deformation,there are complex deformation mechanism in the process of grain refinement. Further deformation will not change the overall microstructure and properties when the material microstructure reaches a stable state. The minimum size not only depend on the material internal properties, for example crystal structure and stacking fault energy,it is also affected by external conditions, such as strain rate and deformation temperature. 1060 commercial pure aluminum was investigated in high strain rate deformation (500—1 500 s-1)by Split Hopkinson Pressure Bar. Microstructural and crystal orientation were characterized using FEI Verios 460 SEM and FEI Nano SEM Nova 430, respectively. The results show that the increase of strain ratethe grains are refined obviously and the preferred orientation exists in the grains. Forming a large number of low angle grain boundaries, the hardness reaches 430 MPa. It shows that for pure aluminum with high dislocation energy and low melting point, high strain rate can promote the formation of low angle grain boundary and improve the hardness of the material.
Key words:  pure aluminum    high strain rate    microstructure    low angle grain boundaries    hardness
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TG146.2  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHPY007);甘肃省科学技术厅中小企业创新基金(18CX6JA025)
通讯作者:  qiaojisen@lut.cn   
作者简介:  王兵,现为兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室硕士研究生。主要研究领域为金属材料大塑性变形及损伤失效力学行为研究。
乔及森,兰州理工大学材料科学与工程学院教授,博士研究生导师。2007年12月毕业于兰州理工大学焊接工程系,材料加工工程博士学位。同年加入兰州理工大学材料科学与工程学院工作至今,主要从事移动装置焊接结构轻量化设计与制造基础研究,金属材料塑性大变形力学行为研究。在国际和国内学术期刊发表相关研究论文60余篇,申请国家发明专利7项。获甘肃省科技进步一等奖一项,甘肃省冶金有色工业二等奖一项。
引用本文:    
王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
WANG Bing, QIAO Jisen, XIA Zonghui. Effect of Strain Rate on Deformation Structure and Orientation of Pure Aluminum. Materials Reports, 2020, 34(24): 24104-24108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120164  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24104
1 Meyers M A, Mishra A, Benson D J.Progress in Materials Science, 2006, 51(4), 427.
2 Muñoz Jairo Alberto.Materials Letters, 2019, 238(1), 42.
3 Huang F, Tao N R, Lu K.Journal of Materials Science & Technology, 2011, 27(7), 628 (in Chinese).
黄丰, 陶乃镕, 卢柯. 材料科学技术, 2011, 27(7), 628.
4 Xu W, Liu X C, Lu K.Acta Materialia, 2018, 152(15), 138.
5 Huang X, Kamikawa N, Hansen N.Journal of Materials Science, 2008, 43(23-24), 7397.
6 Li W L, Tao N R, Lu K.Scripta Materialia, 2008, 59(5), 546.
7 Naghdy Soroosh, Kestens Leo, Hertelé Stijn, et al.Materials Characte-rization, 2016, 120, 285.
8 Lu K.Nature Reviews Materials, 2016, 1(5), 1.
9 Valiev Ruslan Z, Estrin Yuri, Horita Zenji, et al.JOM, 2006, 58(4), 33.
10 Estrin Y, Vinogradov A.Acta Materialia, 2013, 61(3), 782.
11 Peng H R, Gong M M, Chen Y Z, et al.International Materials Reviews, 2016, 62(6), 303.
12 Zhou X, Li X Y, Lu K.Science, 2018, 360(6388), 526.
13 Mohamed Farghalli A.Acta Materialia, 2003, 51(14), 4107.
14 Ovid'ko I A, Valiev R Z, Zhu Y T.Progress in Materials Science, 2018, 94, 462.
15 Yang Y, Chen Y D, Hu H B, et al.Journal of Materials Research, 2015, 30(22), 3502.
16 Dou Z Y, Jiang L T, Wu G H, et al.Scripta Materialia, 2007, 57(10), 945.
17 Yang Yang, Wang Junliang, Chen Yadong, et al.Transactions of Nonferrous Metals Society of China, 2018, 28(1), 1 (in Chinese).
杨扬, 王君良, 陈亚东, 等. 中国有色金属学报, 2018, 28(1), 1.
18 Cordero Z C, Knight B E, Schuh C A.International Materials Reviews, 2016, 61(8), 495.
19 Ito Yuki, Edalati Kaveh, Horita Zenji.Materials Science and Engineering: A, 2017, 679, 428.
20 Schiøtz Jakob, Di Tolla Francesco D, Jacobsen Karsten W.Nature, 1998, 391(6667), 561.
21 Kocks U F, Mecking H.Progress in Materials Science, 2003, 48(3), 171.
22 Hansen Niels. Scripta Materialia, 2004, 51(8), 801.
23 Huang F, Tao N R.Journal of Materials Science & Technology, 2011, 27(1), 1 (in Chinese).
黄丰, 陶乃镕. 材料科学技术, 2011, 27(1), 1.
24 Mishin O V, Godfrey A, Juul Jensen D, et al.Acta Materialia, 2013, 61(14), 5354.
25 Li Y, Zhang Y, Tao N, et al.Acta Materialia, 2009, 57(3), 761.
26 Humphreys John, Rohrer Gregory S, Rollett Anthony.Recrystallization and related annealing phenomena, Elsevier, Netherlands, 2017.
27 Winning M, Rollett A D, Gottstein G, et al.Philosophical Magazine, 2010, 90(22), 3107.
[1] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[2] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[3] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[4] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[5] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[6] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[7] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[8] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[9] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[10] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[11] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[12] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[13] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[14] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[15] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed