Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24080-24085    https://doi.org/10.11896/cldb.20010072
  金属与金属基复合材料 |
基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能
吴双全1, 任鑫1, 初鑫2, 江仁康1, 窦春岳1, 高志玉1
1 辽宁工程技术大学材料科学与工程学院,阜新123000
2 中国石油集团长城钻探工程有限公司工程服务公司,盘锦124010
Structure and Wear Resistance of Ni-nano TiC Composite Coatings Based on Double-pulse Electrodeposition
WU Shuangquan1, REN Xin1, CHU Xin2, JIANG Renkang1, DOU Chunyue1, GAO Zhiyu1
1 School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
2 Engineering Services Company of PetroChina Great Wall Drilling Engineering Co., Ltd., Panjin 124010, China
下载:  全 文 ( PDF ) ( 13438KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究第二相TiC颗粒对Ni基复合镀层组织结构及耐磨性能的影响,利用双向脉冲电沉积技术在Q235钢表面分别制备了纯Ni镀层、Ni-微米TiC复合镀层及Ni-纳米TiC复合镀层。通过FESEM、XRD、EDS对镀层的表面形貌、物相及成分进行了表征,并对比研究了镀层的表面粗糙度、显微硬度和耐磨性能。结果表明:加入TiC颗粒后,镀层表面由胞状结构转变为菜花状结构,同时基质金属镍的沉积取向行为发生了变化。Ni-纳米TiC复合镀层的平均晶粒尺寸为24.9 nm,约为Ni-微米TiC复合镀层的1/3。与Ni-微米TiC复合镀层相比,Ni-纳米TiC复合镀层具有更小的表面粗糙度(Ra=3.500 μm)和更高的表面硬度(820.5HV0.1)。磨损试验结果表明,复合镀层的磨损机制是轻微的磨粒磨损和粘着磨损混合,TiC颗粒延缓了基质镍镀层的磨损速率。其中,Ni-纳米TiC复合镀层的平均磨损速率为5.6 mg/(cm2·min),约为Ni-微米TiC复合镀层的1/2,表现出对基体更为优异的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴双全
任鑫
初鑫
江仁康
窦春岳
高志玉
关键词:  双向脉冲电沉积  TiC颗粒  镍基复合镀层  微观结构  耐磨性    
Abstract: In order to investigate the influence of the second-phase (TiC particles) on the microstructure and wear resistance of Ni-based composite coatings, pure Ni coating, Ni-micro TiC composite coating and Ni-nano TiC composite coating were prepared on the Q235 steel by double-pulse electrodeposition, respcetively. The surface morphology, phase structure and composition of the coatings were characterized by FESEM, XRD and EDS, and the surface roughness, microhardness and wear resistance of the coatings were compared, respectively. The results show that after adding TiC particles, the surface morpholgogy of the coating changes from a cellular structure to a cauliflower structure, and the deposition orientation behavior of the nickel matrix also changes. The average grain size of Ni-nano TiC composite coating is 24.9 nm, approximately 1/3 of Ni-micro TiC composite coating. Compared with the Ni-micro TiC composite coating, Ni-nano TiC composite coating has a smaller surface roughness (Ra=3.500 μm) and a higher surface hardness (820.5HV0.1). The results of the abrasion test indicate that the wear mechanism of the composite coating is a mixture of slight abrasive wear and adhesive wear, and the wear rate of the nickel-based coating decreases due to the presence of TiC particles. Among them, the average wear rate of the Ni-nano TiC composite coating is 5.6 mg/(cm2·min), which is about 1/2 of the Ni-micro TiC composite coating, showing better wear resistance to the substrate.
Key words:  double-pulse electrodeposition    TiC particles    nickel-based composite coating    microstructure    wear resistance
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TG174  
基金资助: 辽宁省教育厅科学技术研究资助项目(LJ2020JCL027);辽宁省博士科研启动基金项目(20170520151)
通讯作者:  lnturen@163.com   
作者简介:  吴双全,2017年6月毕业于辽宁工程技术大学,获得工学学士学位。现于辽宁工程技术大学攻读材料科学与工程专业硕士学位,主要从事金属材料表面改性和防护的研究。
任鑫,辽宁工程技术大学教授,硕士研究生导师。2005年7月,在南京理工大学获得材料学专业工学博士学位。以第一作者在国内外学术期刊上发表论文50余篇,主持参与课题十余项。研究工作主要为材料表面改性、材料腐蚀与防护等。
引用本文:    
吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
WU Shuangquan, REN Xin, CHU Xin, JIANG Renkang, DOU Chunyue, GAO Zhiyu. Structure and Wear Resistance of Ni-nano TiC Composite Coatings Based on Double-pulse Electrodeposition. Materials Reports, 2020, 34(24): 24080-24085.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010072  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24080
1 Wang J Q, Lei W N, Xue Z M, et al. Materials Engineering, 2018, 46(12),18 (in Chinese).
王剑桥, 雷卫宁, 薛子明, 等.材料工程, 2018, 46(12),18.
2 Liu M H, Wang D A, Wang H W, et al. Materials (Basel, Switzerland), 2019, 12(10),165.
3 Hou J P, Bai Y, Guo J M, et al.Journal of Yunnan University for Natio-nalities (Natural Science Edition), 2016, 25(1),18 (in Chinese).
侯健萍, 白阳, 郭俊明, 等.云南民族大学学报(自然科学版), 2016, 25(1),18.
4 Zhao K. Study on electrophoresis-pulsed electrodeposition Ni-Al2O3-MoS2 composite coating and its properties. Master′s Thesis,Xi′an University of Science and Technology, China, 2015 (in Chinese).
赵坤. 电泳-脉冲电沉积Ni-Al2O3-MoS2复合镀层及其性能研究. 硕士学位论文,西安科技大学, 2015.
5 Xue Y J, Liu H B, Lan M M, et al. Surface and Coatings Technology, 2013, 204(21-22),3539.
6 Sun P Q, Zhu D G, Jianu X S, et al. Journal of Inorganic Materials, 2013, 28(4),363(in Chinese).
孙培秋, 米德贵, 蒋小松, 等. 无机材料学报, 2013, 28(4),363.
7 Huang R U, Yin C, Huang J, et al. Materials & Design, 2016, 97,473.
8 Du B S, Paital S R, Dahotre N B, et al. Optics & Laser Technology, 2013, 45(1),647.
9 Fu Z Z, Koc R. Materials Science & Engineering A, 2016, 676,278.
10 Sahar A, Chanuiz D, Massood E. Progress in Natural Science:Materials International, 2012, 22(5),48.
11 Wang H X, Mao X Y, Shen T, et al. Materials Engineering, 2017, 45(1),52 (in Chinese).
王红星, 毛向阳, 沈彤, 等.材料工程, 2017, 45(1),52.
12 Ren X, Wu S Q, Jiang R K, et al.Ordnance Material Science and Engineering, 2019, 42(5),74 (in Chinese).
任鑫, 吴双全, 江仁康, 等. 兵器材料科学与工程, 2019, 42(5),74.
13 Wang Y. Surface Technology, 2017, 46(2),92(in Chinese).
王毅. 表面技术, 2017, 46(2),92.
14 Jia W P, Yao J L, Wu M H, et al. Surface Technology, 2017, 46(7),110(in Chinese).
贾卫平, 姚井龙, 吴蒙华, 等. 表面技术, 2017, 46(7),110.
15 Jia W P, Wu M H, Yang F. Surface Technology, 2014, 43(5),55(in Chinese).
贾卫平, 吴蒙华, 杨帆.表面技术, 2014, 43(5),55.
16 Chen Y S, Zhang X H. Materials Protection, 2011, 44(4),43 (in Chinese).
陈一胜, 张雪辉.材料保护, 2011, 44(4),43.
17 Ma Z, Wang Y W, Zhang L. Heat Treatment of Metals, 2015, 40(1),61 (in Chinese).
马壮, 王义伟, 张莉.金属热处理, 2015, 40(1),61.
18 Cao D Y, Yang J R, Zhang G X, et al. Physical Test, 2006, 24(6),14 (in Chinese).
曹大勇, 杨景茹, 张国旭, 等.物理测试, 2006, 24(6),14.
19 Peng Q Y, Fei J Y, Chen J T, et al. Materials Engineering, 2018, 46(3),81(in Chinese).
彭秋艳, 费敬银, 陈居田, 等.材料工程, 2018, 46(3),81.
20 Zhou X W. Study on bidirectional pulse electrodeposition of nano-CeO2 reinforced nickel-based coating on titanium-based metal surface. Ph.D. Thesis,Nanjing University of Aeronautics and Astronautics, China, 2014 (in Chinese).
周小卫. 钛基金属表面双脉冲电沉积纳米CeO2增强镍基镀层的研究. 博士学位论文,南京航空航天大学, 2014.
21 Ebrahimi F, Bourne G R, Kelly M S.Nanostructured Materials, 1999, 11(3),343.
22 Jeong D H, Gonzalez F, Palumbo G, et al.Scripta Materialia, 2001, 44(3),493.
23 Zhang M. Preparation of Cu-ZrB2 composite coating for electromachining and its electromachining performance. Ph.D. Thesis,Dalian University of Technology, China, 2006 (in Chinese).
张旻.电加工用Cu-ZrB2复合镀层的制备及其电加工性能研究. 博士学位论文,大连理工大学, 2006.
24 Chu H T. Study on electrodeposited Sn-SiC nano composite coating and its solderability. Ph.D. Thesis,Harbin Institute of Technology, China, 2014 (in Chinese).
初红涛. 电沉积Sn-SiC纳米复合镀层及其可焊性研究. 博士学位论文,哈尔滨工业大学, 2014.
25 Liu W M, Chen G G, Wang C M, et al. Materials Reports A:Review Papers, 2016, 30(6),7 (in Chinese).
刘委明, 陈国贵, 王从敏, 等.材料导报:综述篇, 2016, 30(6),7.
26 Jia W P, Wu M H, Jia Z Y, et al.Materials Reports B:Research Papers, 2020, 34 (1), 2017.
贾卫平, 吴蒙华, 贾振元, 等.材料导报:研究篇, 2020, 34(1),2017.
27 Zhou W, Zhang L F, Xiong Y, et al. Journal of Plasticity Engineering, 2018, 25 (5),291(in Chinese).
周伟, 张凌峰, 熊毅, 等.塑性工程学报, 2018, 25(5),291.
28 Liu Y L. Surface Technology, 2016, 45(12),91(in Chinese).
刘演龙.表面技术, 2016, 45(12),91.
29 Xue Y J, Zhu D, Jin G H, et al. Chinese Journal of Tribology, 2005, 25(1),1(in Chinese).
薛玉君, 朱荻, 靳广虎, 等.摩擦学学报, 2005, 25(1),1.
30 Qin Z B, Wu Z, Hu W B. Journal of Chinese Nonferrous Metals, 2019, 29 (9),2192 (in Chinese).
秦真波, 吴忠, 胡文彬.中国有色金属学报, 2019, 29(9),2192.
[1] 秦建, 龙伟民, 路全彬, 李胜男, 黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(Z2): 457-461.
[2] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[3] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[4] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[5] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[6] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[7] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[8] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[9] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[10] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[11] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[12] 郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
[13] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[14] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[15] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed