Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24001-24004    https://doi.org/10.11896/cldb.19120144
  无机非金属及其复合材料 |
热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响
贾碧1,2, 李晓博2, 潘复生1, 王如转2, 袁玉娇2, 罗春希2, 朱钊2, 刘汉蕾2
1 重庆大学材料科学与工程学院,重庆400044
2 重庆科技学院冶金与材料工程学院,重庆401331
The Effect of Hot-pressing Sintering Temperature on Graphene-reinforced Alumina Matrix Composites
JIA Bi1,2, LI Xiaobo2, PAN Fusheng1, WANG Ruzhuan2, YUAN Yujiao2, LUO Chunxi2, ZHU Zhao2, LIU Hanlei2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 3834KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯/氧化铝复合材料的制备工艺及力学性能已成为目前先进陶瓷材料的研究热点。通过热压烧结技术,在烧结压力40 MPa下成功制备了石墨烯/氧化铝复合材料,并系统地研究了热压烧结温度对石墨烯/氧化铝复合材料的结构和力学性能的影响规律。结果表明,热压烧结温度对石墨烯/氧化铝复合材料晶相的影响较小,均为Al2O3(刚玉)晶相。复合材料的抗弯强度、维氏硬度随着烧结温度的升高先增大后减小,但是烧结温度对断裂韧性的影响较小。当烧结温度为1 550 ℃时复合材料的性能最优,材料的弯曲强度、维氏硬度与断裂韧性分别为673.84 MPa、20.4 GPa、5.98 MPa·m1/2。同时,通过SEM分析了石墨烯增强氧化铝基复合材料的断面微观结构,揭示了晶粒尺寸变化是复合材料力学性能变化的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾碧
李晓博
潘复生
王如转
袁玉娇
罗春希
朱钊
刘汉蕾
关键词:  氧化铝复合材料  石墨烯  热压烧结温度  微观结构  力学性能    
Abstract: The research on the preparation technology and mechanical properties of graphene-reinforced alumina matrix composites has attracted extensive attention. In our work, the graphene-reinforced alumina matrix composites were successfully prepared by hot pressing sintering technology at sintering pressure of 40 MPa. The influence of hot-pressing sintering temperature on the structure and mechanical properties of graphene-reinforced alumina matrix composites was systematically studied. The results show that hot-pressing sintering temperature has little effect on the crystal phase of graphene-reinforced alumina matrix composites, which are all Al2O3 (corundum) crystal phase. With increasing of sintering temperature, the bending strength and Vickers hardness of the composite increase and then decrease obviously, but the effect of sintering temperature on fracture toughness is very small. When the sintering temperature reaches to 1 550 ℃, the composite has the best properties, bending strength, fracture toughness, Vickers hardness of graphene/alumina matrix composites were 673.84 MPa, 20.4 GPa and 5.98 MPa·m1/2, respectively. Furthermore, the microstructure of graphene reinforced alumina matrix composite hot pressed at different temperature indicates that the change of grain size result in the change of mechanical properties of composites.
Key words:  alumina matrix composites    graphene    hot-pressing sintering temperature    microstructures    mechanical properties
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TB383  
基金资助: 国家自然科学基金(11972100);重庆市技术创新与应用发展专项(cstc2019jscx-fxydX0075);重庆科技学院优秀创新人才培养资助计划(201604)
通讯作者:  18696617359@163.com   
作者简介:  贾碧,重庆科技学院教授。研究工作主要围绕超硬、超强、耐磨、防腐、环保等先进陶瓷材料与器件以及冶金检测技术与装备的研发。承担国家科技部“863”项目与支撑计划子项目及平台基金项目各1项;公开发表科研教研论文33篇;获授权国家专利25项;获省部级科技成果奖多项;主持成果转化项目多项。
引用本文:    
贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
JIA Bi, LI Xiaobo, PAN Fusheng, WANG Ruzhuan, YUAN Yujiao, LUO Chunxi, ZHU Zhao, LIU Hanlei. The Effect of Hot-pressing Sintering Temperature on Graphene-reinforced Alumina Matrix Composites. Materials Reports, 2020, 34(24): 24001-24004.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120144  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24001
1 Becher P F, Wei G C.Journal of the American Ceramic Society, 1984, 67, 267.
2 Wei G C, Becher P F.American Ceramic Society Bulletin, 1985, 64, 298.
3 Yin Z B, Huang C Z, Zou B, et al.Ceramics International, 2013, 39, 8877.
4 Yazdani B, Xia Y, Ahmad I, et al.Journal of the European Ceramic So-ciety, 2015, 35, 179.
5 Changgu L, Xiaoding W, Jeffrey W K, et al.Science, 2008, 321(5887), 385.
6 Li S B, Wang Z F, Jiang H M, et al.Chemical Communications, 2016, 52(73), 13.
7 Zhu T, Li S B, Bin R, et al.Journal of Materials Science, 2019, 54(13), 9632.
8 Liu Z L, Zhu J, Shi J L, et al.Ceramics International, 2017, 43(14), 11421.
9 He T, Li J L, Wang L J, et al.Materials Transactions, 2009, 50, 749.
10 Porwal H, Tatarko P, Grasso S, et al. Carbon, 2013, 64, 359.
11 Çelik Y, Çelik A, Flahaut E, et al.Journal of the European Ceramic So-ciety, 2016, 36, 2075.
12 Yazdani B, Porwal H, Xia Y D, et al.Ceramics International, 2015, 41, 9813.
13 Cui E Z, Zhao J, Wang X C, et al.Ceramics International, 2018, 44, 13538.
14 Wang L, Bi J Q, Wang W L, et al.Ceramics International, 2019, 45, 8081.
15 Jaroslaw T W, Maria T, Grzegorz C, et al.Ceramics International, 2016, 42, 8597.
16 Fan Y, Wang L, Li J, et al.Carbon, 2010, 48, 1743.
17 Fan Y C, Wang L L, Liu J L, et al. Carbon, 2010, 48(6), 1743.
18 CentenoA, Rocha V G, Alonso B, et al. Journal of the European Ceramic Society, 2013, 33, 3201.
19 Frank F. Spectrochimica Acta Part B Atomic Spectroscopy, 2000, 55(7), 1051.
20 Hansen N.Scripta Materialia, 2004, 51, 801.
21 Kato M. Materials Transactions, 2014, 55, 19.
22 Sumin Z, William G F, Gregory E H. Journal of the European Ceramic Society, 2007, 27(4), 2077.
23 Watts J, Hilmas G E, Fahrenholtz W G. Journal of the American Ceramic Society, 2011, 94, 4410.
24 Griffith A A.Philosophical Transactions of the Royal Society of London, 1921, 221(2), 163.
25 Alireza R, William G F, Gregory E. Journal of Materials Science, 2007, 42(8), 2735.
[1] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[2] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[3] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[4] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[5] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[6] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[7] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[8] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[9] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[10] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[11] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[12] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[13] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[14] 王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 555-561.
[15] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed