Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24045-24054    https://doi.org/10.11896/cldb.20020020
  无机非金属及其复合材料 |
多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构
黄守刚1,2, 陈进杰3, 王建西4, 孙国文5
1 河北省交通安全与控制重点实验室,石家庄050043
2 石家庄铁道大学交通运输学院,石家庄050043
3 河北水利电力学院,沧州061001
4 石家庄铁道大学土木工程学院,石家庄050043
5 石家庄铁道大学材料工程学院,石家庄050043
Railway Sleepers and Its Microstructure
HUANG Shougang1,2, CHEN Jinjie3, WANG Jianxi4, SUN Guowen5
1 Key Laboratory of Traffic Safety and Control of Hebei Province, Shijiazhuang 050043, China
2 School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3 Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China
4 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
5 School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
下载:  全 文 ( PDF ) ( 14266KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决肯尼亚当地骨料多孔、密度大给轨枕用混凝土施工带来的粘稠度大、大气泡难以排出、潜在的耐久性隐患等问题,本实验在聚羧酸减水剂高减水和低吸附性优化的基础上,选用改性松香热聚物引气剂、十二烷基磺酸钠引气剂和三萜皂苷引气剂三种不同类型的引气剂来进一步降低新拌混凝土的粘稠度,并通过X射线计算机断层扫描技术(X-CT)、扫描电镜(SEM)和气泡间距测定仪来表征硬化后混凝土内部多孔骨料分布、孔隙分布以及骨料与浆体之间的界面过渡区。
   结果表明:三种引气剂掺入后,都可以改善新拌混凝土的状态,随掺量增加新拌混凝土的流动性略有增加,粘度明显下降;在掺量相同时,三种引气剂改善粘度的效果有很大差异,说明三种引气剂与多孔骨料的作用不同。三萜皂苷引气剂是一种非离子型表面活性剂,当其溶于水后形成两种基团的排列,可显著降低骨料气孔中气体和液体间的表面张力,使拌合水更容易浸润骨料孔隙,偏于排气;改性松香热聚物引气剂主要是可降低拌合水的表面张力,而骨料微孔中的气体表面张力降低有限;十二烷基磺酸钠引气剂在水溶液中易于吸附至固体颗粒表面,也容易吸附到多孔骨料表面,导致骨料内部的气泡难以排除。与其他两种引气剂相比,三萜皂苷引气剂的掺入能有效降低新拌多孔骨料混凝土的粘度和骨料自身孔的表面张力,便于气泡排出,使轨枕用混凝土的外观质量得到显著改善,气泡间距测定法也探明硬化后混凝土内部的气泡间距显著缩小。
   轨枕钻心取样后的X-CT和SEM测试表明骨料在纵向分布匀质性好,内部孔隙数量少,无宏观大缺陷。通过对比多孔骨料与致密玄武岩骨料的界面区特征发现:多孔骨料不仅表面粗糙,而且表面和内部都有一定的孔隙,粗糙的表面与浆体之间的机械咬合力较强;骨料表面存在大量的微孔,不仅易吸附水,而且在微孔内可以涵水,这对混凝土的工作性不利,尤其对低水胶比的轨枕用混凝土而言,表面微孔吸水可促进骨料周围浆体的水化,在外界相对湿度较低时,微孔的涵水又能释放出来,有利于二者之间界面过渡区的强化,这归结为多孔骨料的微泵效应和机械咬合力强化效应。此外,X-CT也证实多孔骨料中的粗大孔隙被浆体充填,产生了“销钉”效应,强化了骨料自身密实性,也在一定程度上降低了骨料内部孔隙潜在的孔隙连通性问题。总之,肯尼亚当地的多孔骨料在混凝土中显现的微泵效应、机械咬合力强化效应以及粗大孔隙的充填“销钉”效应弥补了其自身不足,可被用于当地轨枕预制结构中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄守刚
陈进杰
王建西
孙国文
关键词:  多孔玄武岩骨料  轨枕  混凝土  引气剂  微观结构  X-CT  气泡特征参数    
Abstract: As Kenya′s local aggregates are porous and have a high specific gravity, they bring such problems to the construction of concrete for slee-pers as a large viscosity, big bubbles hard to discharge, and potential durability hazard. To prevent the complications, based on the optimization of polycarboxylate water reducer for high water reducing and low adsorption, three different air entraining agents were selected in the paper to further reduce the viscosity of fresh concrete, and the X-ray computed tomography (X-CT), scanning electron microscopes (SEM) and the bubble spacing tester were employed to characterize the distribution of porous aggregates, the distribution of pores, and the interfacial transition zone (ITZ) between aggregate and cement paste, within concrete after hardening. The results showed that, compared with modified rosin thermopolymer air entraining agent and sodium dodecyl sulfate (SDS) air entraining agent, the addition of triterpene saponin air entraining agent can effectively reduce the viscosity of the fresh porous aggregate concrete and the surface tension of aggregates, significantly improving the appea-rance quality of concrete for sleepers. The result of bubble spacing method showed that the space between bubbles in the hardened concrete is significantly reduced. The X-CT and SEM testing after sleeper core sampling demonstrated well-distributed aggregates in the longitudinal direction and a small amount of pores in concrete, with no macroscopic major defect; the micro-pump effect of micro-pores in porous aggregates, their rough surface with strong mechanical interlock effect, and the "pin" effect of their coarse pores filled with paste, all make aggregates more dense; and the ITZ between aggregate and paste also reduces potential pore connectivity in aggregates to a certain extent.
Key words:  porous basalt aggregate    sleeper    concrete    air entraining agent    microstructure    X-CT    characteristic parameters of bubbles
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金 (51778378)
通讯作者:  huangshougang@sina.com   
作者简介:  黄守刚,石家庄铁道大学副教授,硕士研究生导师。主持课题20多项,涵盖轨道交通结构设计、智能建造等方向;获河北省社会科学优秀成果奖二等奖1项,出版著作与教材20余部,授权专利多项。
引用本文:    
黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
HUANG Shougang, CHEN Jinjie, WANG Jianxi, SUN Guowen. Railway Sleepers and Its Microstructure. Materials Reports, 2020, 34(24): 24045-24054.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020020  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24045
1 Gui R P, Jiang X J, Wang J X. Railway Engineering, 2019, 59(4), 127.
2 José Manuel Moreno-Maroto, Beatriz González-Corrochano, Jacinto Alonso-Azcárate, et al.Cement and Concrete Composites, 2017, 83, 335.
3 Bubeník J, Zach J.Transportation Research Procedia, 2019, 40, 639.
4 Ibrahim N M, Wen L Q, Amat R C, et al.Materials Science Forum, 2014, 803, 11.
5 Volland S, Kazmina O, Vereshchagin V, et al.Construction and Building Materials, 2014, 52(2), 361.
6 Sun Y, Yu R, Shui Z H, et al.Construction and Building Materials, 2019,222(10), 130.
7 Franesqui M A, Yepes J, Cándida García-González G.Construction and Building Materials, 2019 201(3), 328.
8 Chatterji S.Cement and Concrete Composites, 2003, 25(7), 759.
9 Yu X M, Ren Q W.Hohai University (Natural Sciences), 2009, 37(5), 112.
10 Zhang X. Application and research of entraining agent in concrete. Master′s Thesis, Shenyang Jianzhu Universty,China, 2016 (in Chinese).
11 Yang Q, Zhu P, Wu X, et al.Cement and Concrete Research, 2000, 30(8), 1313.
12 Nipat P, Masahiro O, Anuwat A.Construction and Building Materials, 2018, 180, 437.
13 Wang Y, Liang H C, Zhao B C, et al.Key Engineering Materials, 2017, 726, 537.
14 Sarda S, Nilsson M, Balcells M, et al.Journal of Biomedical Materials Research Part A, 2010, 65(2), 215.
15 Gao P, Yu H F, Wen J, et al.Journal of the Chinese Ceramic Society 2019,47(5), 625.
16 Powers T C.The American Conerete lnstitute, 1945, 16(4), 245.
[1] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[2] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[3] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[4] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[5] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[6] 余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
[7] 郝哲昕, 钱春香, 周横一, 李进, 吴亚东, 张昆. 清水混凝土外观质量信息采集与分析方法及其工程应用[J]. 材料导报, 2020, 34(Z2): 233-241.
[8] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[9] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[10] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[11] 李义强, 李智, 赵斌, 刘磊, 蓝群力, 张新天, 卞立波. 多孔质混凝土植被恢复组合结构与材料性能研究[J]. 材料导报, 2020, 34(Z1): 199-202.
[12] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[13] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[14] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[15] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed