Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24029-24033    https://doi.org/10.11896/cldb.20020056
  无机非金属及其复合材料 |
环保型细集料对超高性能混凝土力学性能的影响
褚洪岩1,2, 蒋金洋2,3, 李荷1, 夏广林1
1 南京林业大学土木工程学院,南京210037
2 江苏省土木工程材料重点实验室,南京211189
3 东南大学材料科学与工程学院,南京211189
Effects of Eco-friendly Fine Aggregates on Mechanical Properties of Ultra-high Performance Concrete
CHU Hongyan1,2, JIANG Jinyang2,3, LI He1, XIA Guanglin1
1 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2 Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 5213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对目前我国河砂供不应求的情况,探究用环保型细集料(再生砂、机制砂、风积沙)制备绿色超高性能混凝土的可行性。用环保型细集料代替河砂,按标准试验方法研究了超高性能混凝土(UHPC)的力学性能,还探究了UHPC的工作性能和微观结构。研究结果表明:用环保型细集料制备的绿色UHPC具有良好的工作性能,其力学性能与采用河砂制备的普通UHPC的力学性能基本相当甚至更加优良。采用机制砂制备的绿色UHPC具有较高的力学性能,其抗压强度、抗折强度、弹性模量依次为169.9 MPa、18.8 MPa、47.8 GPa,与河砂制备的普通UHPC相比,其抗压强度、抗折强度、弹性模量分别提高了5.20%、15.34%、5.75%。此外,机制砂和风积沙还可以在一定程度上优化绿色UHPC的孔径结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚洪岩
蒋金洋
李荷
夏广林
关键词:  超高性能混凝土  再生砂  机制砂  风积沙  力学性能  微观结构    
Abstract: Nowadays, the supply of river sand is not adequate to the demand in China, and thus a preliminary evaluation on the feasibility of using eco-friendly aggregates to produce green ultra-high performance concrete (UHPC) was carried out. Different mechanical properties of green UHPC were investigated according to the standard test method by replacing river sand with eco-friendly aggregates (recycled sand, manufactured sand, aeolian sand). The workability and the microstructure of green UHPC were also studied. The workability of green UHPC with eco-friendly aggregates was rather well, and their mechanical properties were comparable or even higher than those of normal UHPC with river sand. The mechanical properties of green UHPC with manufactured sand were much better, and the compressive strength, flexural strength, and modulus of elasticity of this kind of green UHPC were 169.9 MPa, 18.8 MPa, and 47.8 GPa, respectively, which indicated that the compressive strength, fle-xural strength, and modulus of elasticity of green UHPC with manufactured sand were 5.20%, 15.34%, and 5.75% higher than those of normal UHPC with river sand, respectively. In addition, the pore structure of green UHPC was improved to a certain extent due to the utilization of the manufactured sand and aeolian sand in the green UHPC.
Key words:  ultra-high performance concrete    recycled sand    manufactured sand    aeolian sand    mechanical properties    microstructure
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TU528.09  
基金资助: 国家自然科学基金(51808294);江苏省高等学校自然科学研究基金(18KJB430017)
通讯作者:  chuhongyan@njfu.edu.cn   
作者简介:  褚洪岩,南京林业大学土木工程学院,讲师。2017年12月毕业于东南大学,获得工学博士学位。主要从事高性能土木工程材料研发工作,重点研究新型核电牺牲材料和绿色超高性能水泥基材料的制备、表征及应用。
引用本文:    
褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
CHU Hongyan, JIANG Jinyang, LI He, XIA Guanglin. Effects of Eco-friendly Fine Aggregates on Mechanical Properties of Ultra-high Performance Concrete. Materials Reports, 2020, 34(24): 24029-24033.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020056  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24029
1 Zhao S, Sun W. Construction and Building Materials, 2014, 63, 150.
2 Silva R V, De Brito J, Dhir R K.Journal of Cleaner Production, 2016, 112, 2171.
3 Chen Q P. Research on pilot production of recycled total-fine aggregate by waste concrete and its application in concrete. Master′s Thesis, South China University of Technology, China, 2018 (in Chinese).
陈前谱. 废弃混凝土制备全再生细骨料的中试生产及其在混凝土中的应用研究. 硕士学位论文, 华南理工大学, 2018.
4 Hu F J. Experimental study on mix design and mechanical properties of recycled concrete. Ph.D Thesis, North China University of Water Resources and Electric Power, China, 2017 (in Chinese).
胡飞佳. 再生混凝土配合比设计及力学性能试验研究. 博士学位论文, 华北水利水电大学, 2017.
5 Yang H F, Jiang J S, Li D K, et al. Bulletin of the Chinese Ceramic So-ciety, 2018, 37(2), 3946 (in Chinese).
杨海峰, 蒋家盛, 李德坤, 等.硅酸盐通报, 2018, 37(2), 3946.
6 Wang J L, Zhou M K, He T S, et al. Journal of the Chinese Ceramic Society, 2008, 36(4), 482 (in Chinese).
王稷良, 周明凯, 贺图升, 等.硅酸盐学报, 2008, 36(4), 482.
7 Ding Q J, Pengcheng K Y, Hu J, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 488 (in Chinese).
丁庆军, 彭程康琰, 胡俊, 等.硅酸盐通报, 2019, 38(2), 488.
8 Shen W, Liu Y, Cao L, et al.Construction and Building Materials, 2017, 143, 312.
9 Dong W, Lv S, Xue G.Bulletin of the Chinese Ceramic Society, 2018, 37(7), 2320 (in Chinese).
董伟, 吕帅, 薛刚.硅酸盐通报, 2018, 37(7), 2320.
10 Wu J C. Durability research and service life prediction of aeolian sand concrete under complex environment. Ph.D Thesis, Inner Mongolia Agricultural University, China, 2018.
吴俊臣. 复杂环境下风积沙混凝土的耐久性能研究与寿命预测. 博士学位论文, 内蒙古农业大学, 2018.
11 Xie C L, Zhang Y. Highways & Transportation in Inner Mongolia, 2015(6), 22 (in Chinese).
谢春磊, 张勇.内蒙古公路与运输, 2015(6), 22.
12 Chu H Y, Sun W, Jiang J Y. Journal of the Chinese Ceramic Society, 2016, 44(2), 211 (in Chinese).
褚洪岩, 孙伟, 蒋金洋. 硅酸盐学报, 2016, 44(2), 211.
13 Jiang J, Zhou W, Gao Y, et al.Waste Management, 2019, 83, 104.
14 Shen W, Liu Y, Cao L, et al.Construction and Building Materials, 2017, 143, 312.
15 Zhao L, Wang W, Li Z, et al.Materials Testing, 2015, 57(4), 349.
16 Jiang J, Feng T, Chu H, et al.Cement and Concrete Composites, 2019, 97, 369.
17 Ning C J. A study of key technology of high pereformance concrete sand. Ph.D. Thesis, Guangzhou University, China, 2016.
宁成晋. 高强高性能机制砂混凝土关键技术研究. 博士学位论文, 广州大学, 2016.
18 Jiang J, Zhou W, Chu H, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2019, 34(6), 1350.
19 Meng W, Khayat K H.Cement and Concrete Research, 2018, 105, 64.
20 Shen W, Liu Y, Cao L, et al.Construction and Building Materials, 2017, 143, 312.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[5] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[6] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[7] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[8] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[9] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[10] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[11] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[12] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[13] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[14] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[15] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed