Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8042-8050    https://doi.org/10.11896/cldb.19010123
  无机非金属及其复合材料 |
海水海砂制备活性粉末混凝土的碳化机理
李田雨1, 刘小艳1, 张玉梅1, 熊传胜2, 曹文凯3, 李伟华1,3
1 河海大学力学与材料学院,南京 210098;
2 青岛理工大学土木工程学院,青岛 266033;
3 中山大学化学工程与技术学院,珠海 519000
Carbonization Mechanism of Reactive Powder Concrete with Sea-water and Sea Sand
LI Tianyu1, LIU Xiaoyan1, ZHANG Yumei1, XIONG Chuansheng2, CAO Wenkai3, LI Weihua1,3
1 College of Mechanics and Materials, Hohai University, Nanjing 210098, China;
2 College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
3 School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China
下载:  全 文 ( PDF ) ( 10139KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用丰富的海砂资源制备海水海砂活性粉末混凝土并研究其抗碳化性。通过硬度计研究碳化不同阶段混凝土的表面硬度,用酸度计测试其pH变化规律,用XRD和SEM研究其微观成分和形貌变化。研究发现:(1)采用指示剂法测得所有混凝土28 d碳化深度为0,通过SEM扫描电镜测试发现实际碳化发生在混凝土表面(50~100 μm)。(2)碳化28 d后混凝土孔隙液pH明显降低,沿CO2侵蚀方向混凝土孔隙液pH降低幅度呈下降趋势。在距混凝土表面3 mm内,pH变化幅度较大,最终pH均大于10.5,大于钝化膜完全破坏的临界值(9.88);标准养护的混凝土孔隙液的pH均大于11.50,大于钝化膜开始不稳定的临界值;使用海水海砂制备的混凝土孔隙液pH变化小于淡水河砂制备的混凝土。(3)碳化对混凝土的力学性能影响不大,但碳化腐蚀产物沉积在混凝土表面可以增加混凝土表面硬度;(4)海水海砂活性粉末海工混凝土的碳化实际上是CO2与混凝土表层的Ca(OH)2、C-S-H凝胶、C3S、C2S 以及Friedel’s盐反应,生成CaCO3和无定型的水化SiO2覆盖于原始混凝土表面,增加混凝土的抗碳化性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李田雨
刘小艳
张玉梅
熊传胜
曹文凯
李伟华
关键词:  活性粉末混凝土  海砂  碳化  洛氏硬度  pH    
Abstract: In this paper, the carbonation resistance of brine marine sand high performance concrete made from abundant sea sand resources was stu-died.The surface hardness of brine marine sand high performance concrete at different stages of carbonization was studied by means of the durometer, its microscopic composition and morphology were studied by XRD and SEM, and its pH variation was tested by a acidity meter.The results showed that: (1) The carbonation depth of brine marine sand high performance concrete was measured as 0 by using the indicator met-hod, and the actual carbonation depth was found to be within 50—100 μm on the concrete surface by scanning electron microscope test. (2) After 28 days of carbonation, the pH of concrete pore solution decreased significantly, and the pH of concrete pore solution decreased along the direction of CO2 erosion.The larger pH variation is mainly concentrated within 3 mm from the surface, and the final pH is all above 10.5, greater than the critical value of passivation film disappearance (9.88). The pH of the standard curing specimens is all above 11.50, greater than the critical value of passivation film destruction. (3) Carbonization has little effect on the mechanical properties of brine marine sand high performance concrete, but the deposition of corrosion products on the surface of concrete can increase the surface hardness. (4) The carbonation of brine marine sand high performance concrete is actually the reaction of CO2 with Ca(OH)2, C-S-H gel, C3S, C2S and Friedel’s salt to generate CaCO3 and amorphous hydrated SiO2 covering the original concrete surface, increasing the carbonation resistance of concrete.
Key words:  reactive powder concrete    sea sand    carbonation    Rockwell hardness    pH
                    发布日期:  2020-04-25
ZTFLH:  TV331  
基金资助: 河海大学中央高校基本科研业务费项目(2017B05614);国家自然科学基金(51709253;51879093)
通讯作者:  liweihua3@mail.sysu.edu.cn   
作者简介:  李田雨,河海大学力学与材料学院博士研究生,土木工程材料专业,主要从事混凝土耐久性研究。
李伟华,中山大学教授、博士研究生导师,国家杰出青年基金获得者,科技部中青年创新领军人才,同济大学兼职教授,河海大学兼职教授,国际涂层技术创新协会秘书长,中国建筑学会防护与修复材料及应用技术专委会副主任,中国腐蚀与防护学会非金属材料专委会副主任等。近20年来,李伟华教授立足国家海洋战略需求,针对海洋环境基础设施易遭受腐蚀劣化的突出问题,对诱发腐蚀机理和防御调控新技术开展了前沿性和创新性的研究。作为项目负责人先后主持了国家杰出青年基金、国家科技部支撑计划、863计划等,取得了一系列具有重要的科学意义和工程应用价值的研究成果。
引用本文:    
李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
LI Tianyu, LIU Xiaoyan, ZHANG Yumei, XIONG Chuansheng, CAO Wenkai, LI Weihua. Carbonization Mechanism of Reactive Powder Concrete with Sea-water and Sea Sand. Materials Reports, 2020, 34(8): 8042-8050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010123  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8042
1 Niu D T. Durability and life forecast of reinforced concrete structure, Science Press, China, 2003(in Chinese).
牛荻涛. 混凝土结构耐久性与寿命预测, 科学出版社, 2003.
2 Han J D, Sun W, Pan G H. Journal of the Chinese Ceramic Society, 2012, 40(8),1143(in Chinese).
韩建德, 孙伟, 潘钢华. 硅酸盐学报,2012, 40(8), 1143.
3 Yang J. Study on carbonation and gas permeability of concrete. Ph.D. Thesis, Shandong University of Science and Technology, China, 2004(in Chinese).
杨军.混凝土的碳化性能与气渗性能研究. 博士学位论文, 山东科技大学, 2004.
4 Papadakis V G, Vayenas C G, Fardis M N. ACI Materials Journal, 1991, 88(4),363.
5 Meier S A, Peter M A, Muntean A. Chemical Engineering Science, 2007, 62, 1125.
6 Xu C, Wang C K, Jin W L. Journal of Building Materials, 2011, 6(3),376(in Chinese).
许晨, 王传坤, 金伟良. 建筑材料学报,2011, 6(3), 376.
7 Papadarkis V G, Vayenas C G, Fardis M N. ACI Materials Journal, 1991, 88(8),363.
8 Liu Z Y, Sun W, Lv Y G, et al. Industrial Construction, 2005, 35(10), 50(in Chinese).
刘志勇, 孙伟, 吕永高, 等. 工业建筑, 2005, 35(10),50.
9 Zhang P, Zhao T J, Guo P G, et al. Journal of Southeast University: Natural Science, 2006, 36(SupⅡ),238(in Chinese).
张鹏, 赵铁军, 郭平功, 等.东南大学学报: 自然科学版, 2006, 36(增刊Ⅱ),238.
10 David R L. CRC handbook of chemistry and physics different groups, Boca Raton: CRC Press, 2005.
11 Yuan C F, Niu D T, Duan F Z, et al.Building of the Chinese Ceramic Society. 2011(5), 1126(in Chinese).
元成方, 牛荻涛, 段付珍, 等.硅酸盐通报. 2011(5),1126.
12 Liu S F, Sun W, et al.Journal of the Chinese Ceramic Society, 2003(11), 1080(in Chinese).
刘斯凤, 孙伟, 等.硅酸盐学报, 2003(11), 1080.
13 Wang Y, Niu D T, Miao Y Y. Journal of Building Materials, 2014, 17(4), 579(in Chinese).
王艳, 牛荻涛, 苗元耀. 建筑材料学报, 2014, 17(4), 579.
14 Huo H L. Building of the Chinese Ceramic Society, 2016(5),1642(in Chinese).
霍洪磊. 硅酸盐通报. 2016(5),1642.
15 Szilagyi K, Borosnyoi A, Zsigovics I. Construction and Building Mate-rials, 2011, 25(5),2480.
16 Ruan X, Liu X, Chen A R.Journal of Tongji University(Natural Scie-nce), 2013(2), 191(in Chinese).
阮欣, 刘栩, 陈艾荣.同济大学学报(自然科学版), 2013(2), 191.
17 Roux N, Andrade C, Sanjuan M A.Journal of Materials in Civil Engineering, 1996,2,1.
18 Song S M, Wei C X. Concrete, 2006(2),72(in Chinese).
宋少民, 未翠霞. 混凝土, 2006(2),72.
19 Niu D T, Dong Z P, Pu Y X. Industrial Construction, 1999, 29(9), 41(in Chinese).
牛荻涛, 董振平, 浦聿修.工业建筑, 1999, 29(9), 41.
20 Xu L P, Huang S Y. Journal of Shanghai Institute of Building of Mate-rials, 1991, 4(4),347(in Chinese).
许丽萍, 黄士元.上海建材学院学报, 1991, 4(4), 347.
21 Zhang Y, Jiang L X. Industrial Construction, 1998, 28(1), 16(in Chinese).
张誉, 蒋利学. 工业建筑, 1998, 28(1), 16.
22 Li G, Yuan Y S, Geng O.Concrete, 2004(11), 49(in Chinese).
李果, 袁迎曙, 耿欧.混凝土, 2004(11),49.
23 Papadarkis V G, Vayenas C G, Fardis M N.AICh E Journal, 1989, 35(10), 1639.
24 Papadarkis V G.Cement and Concrete Research, 2000, 30(2), 291.
25 Mc Polin D O, Basheer P A M, Long A E. Journal of Materials in Civil Engineering, 2009, 21(5), 217.
26 Liu Z Y. Study on methods of accelerated testing of marine concrete durability based on simulating environment and service life prediction. Ph.D. Thesis, Southeast University, China, 2006(in Chinese).
刘志勇. 基于环境的海工混凝土耐久性试验与寿命预测方法研究. 博士学位论文, 东南大学, 2006.
27 Zhou X L, Zhang S, Xie Y J. Concrete, 2010(4), 42(in Chinese).
周锡玲, 张胜, 谢友均. 混凝土, 2010(4), 42.
28 Liu J H, Song S M, Wang L.Journal of Wuhan University of Technology(Materials Science Edition), 2009,24(3),506.
29 W. Kurdowski. DOI 10.1007/978-94-007-7945-7-6
30 Zhang Y, Jiang L X, Zhang W P, et al. Durability of concrete structures. Shanghai Scientific & Technical Publishers, China, 2003(in Chinese).
张誉, 蒋利学, 张伟平, 等. 混凝土结构耐久性概论. 上海科学技术出版社, 2003.
31 Zhao S C. Highway, 2008(4),163(in Chinese).
赵尚传.公路, 2008(4),163.
32 Suryavanshi A K, Narayan S R. Cement and Concrete Research, 1996, 26(5), 729.
[1] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[2] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[3] 陈龙海, 李长荣, 黎志英, 李正嵩, 刘占林. HRB500E钢中第二相VC的异质形核分析与晶粒细化[J]. 材料导报, 2020, 34(Z1): 436-439.
[4] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[5] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[6] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[7] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[8] 马涛, 李慧蓉, 高建新, 宋宏伟, 李欣, 李运刚. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161.
[9] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[10] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[11] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[12] 孙朋朋, 闵娜, 左鹏鹏, 吴晓春. 7Cr5Mo2V冷作模具钢回火特性研究[J]. 材料导报, 2019, 33(z1): 377-381.
[13] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[14] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[15] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed