Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8051-8057    https://doi.org/10.11896/cldb.19030213
  无机非金属及其复合材料 |
降温速率对混凝土冻结应力的影响及机理研究
戈雪良1,2,3, 陆采荣1,2,3, 梅国兴1,2,3
1 南京水利科学研究院,南京 210029;
2 水文水资源与水利工程科学国家重点实验室,南京 210029;
3 水利部应对气候变化研究中心,南京 210029
Research on Effect of Cooling Rate on Concrete Freezing Stress and Its Mechanism
GE Xueliang1,2,3, LU Cairong1,2,3, MEI Guoxing1,2,3
1 Nanjing Hydraulic Research Institute, Nanjing 210029, China;
2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210029, China;
3 Research Center for Climate Change, MWR, Nanjing 210029, China
下载:  全 文 ( PDF ) ( 3958KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 抗冻性是混凝土耐久性的关键指标之一,但仍没有一种冻害理论可以全面解释冻融破坏的所有问题。区别于质量损失、动弹性模量变化等常用抗冻性能表征参数,本研究从混凝土受冻过程中液-固相变产生的冻结应力入手,采用研制的冻结应力测试装置对混凝土单个降温阶段的冻结应力进行了测试表征,系统对比了强度等级C30、抗冻等级F300混凝土在-17 ℃、-40 ℃以及60 ℃/h、30 ℃/h、20 ℃/h、10 ℃/h等四种降温速率条件下的冻结应力初始生成、增长及其最终值的变化规律。试验结果表明,混凝土受冻阶段的冻结应力是可以实现测试的,降温段降温速率主要影响冻结应力的初始生成时间、增长速度;混凝土试件中心温度主要影响最终冻结应力的大小。采用冰晶体生长的热力学理论以及多孔介质材料力学理论,在静水压假说和结晶压假说的基础上,揭示了引发混凝土冻结应力的主要驱动因素,提出了冻结应力的组成及其作用机制模型,该模型可对本试验关于降温速度、最终低温影响混凝土抗冻性的机理进行解释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戈雪良
陆采荣
梅国兴
关键词:  混凝土  抗冻性  降温速率  冻结应力  机理    
Abstract: Frost resistance is one of the important indicators of concrete durability, but freeze-thaw damage of concrete can not been fully explained by any frozen damage theory. Different from the macroscopic antifreeze performance characterization test such as mass loss and dynamic elastic modulus change, a developed device was used to study the freezing stress in a single cooling stage in this paper. The course of freezing stress initial generate, grow, and its final value of the concrete with C30 strength grade and F300 antifreeze grade was compared at -17 ℃, -40 ℃ low temperature, 60 ℃/h, 30 ℃/h, 20 ℃/h, 10 ℃/h and other four cooling rate conditions. The test results showed that the freezing stress of the concrete during the freezing stage can be tested. The cooling rate mainly affects the initial generation time and the increasing speed of the frozen stress. The central temperature of the concrete specimen mainly affects the final frozen stress. Based on the ice crystal growth thermodynamic theory and the mechanics theory porous media, the concrete frozen stress composition and its mechanism model were proposed. This model can explain the effect mechanism of cooling rate and the final low temperature on the frost resistance of concrete.
Key words:  concrete    frost resistance    cooling rate    freezing stress    mechanism
                    发布日期:  2020-04-25
ZTFLH:  TU5  
基金资助: 国家自然科学基金(51579155;11932066);江苏省自然科学基金(BK20191131)
通讯作者:  xlge@nhri.cn   
作者简介:  戈雪良,水利部交通运输部国家能源局南京水利科学研究院材料结构所,教授级高工。2008年毕业于武汉大学,获得工学博士学位。同年加入南京水利科学研究院工作至今,主要从事气候变化与水工程安全、水工混凝土耐久性领域的研究。
引用本文:    
戈雪良, 陆采荣, 梅国兴. 降温速率对混凝土冻结应力的影响及机理研究[J]. 材料导报, 2020, 34(8): 8051-8057.
GE Xueliang, LU Cairong, MEI Guoxing. Research on Effect of Cooling Rate on Concrete Freezing Stress and Its Mechanism. Materials Reports, 2020, 34(8): 8051-8057.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030213  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8051
1 Susanta C.Cement and Concrete Research, 1999,29(5),781.
2 Stefan J.Cement and Concrete Research, 2005,35(2),213.
3 Bjorn J.Cement and Concrete Research, 2010, 32(1),73.
4 Setzer M J.Journal of Colloid and Interface Science, 2001,243(1),193.
5 Mu Ru,Tian Wenling,Zhou Mingjie. Journal of the Chinese Ceramic So-ciety, 2010,38(9),1713.
6 Jiang Zhengwu,Li Xiongying.Journal of the Chinese Ceramic Society, 2010, 38(4),602(in Chinese).
蒋正武,李雄英.硅酸盐学报,2010, 38(4),602.
7 Li Jinyu, Cao Jianguo,Xu Wenyu, et al.Journal of Hydraulic Enginee-ring,1999,30(1),41(in Chinese).
李金玉,曹建国,徐文雨,等.水利学报,1999,30(1),41.
8 Tian Qian, Sun Wei. China Concrete and Cement Products, 1997,2(1),12(in Chinese).
田倩,孙伟.混凝土与水泥制品,1997,2(1),12.
9 You Youkun, Miao Changwen,Mu Ru. China Concrete and Cement Pro-ducts, 2000(5),14(in Chinese).
游有鲲,缪昌文,慕儒.混凝土与水泥制品, 2000(5),14.
10 Guan Yugang, Sun Wei, Miao Changwen.Journal of the Chinese Ceramic Society, 2001,29(6),530(in Chinese).
关宇刚,孙伟,缪昌文. 硅酸盐学报, 2001,29(6),530.
11 Powers T C. ACI Journal,1945,50(9),741.
12 Powers T C, Helmuth R A.Proceedings Highway Research Board, 1953(32),285.
13 Helmuth R A. In: the 4th International Conference on Chemistry of Cement. Washington,1962, pp.855.
14 Mehta P K. Concrete: Microstructure, Properties, and Materials, McGraw-Hill Press, United States,2016.
15 Ge Xueliang,Lu Cairong, Mei Guoxing.Materials Research Innovations,2015(1),37.
16 Lu Cairong, Mei Guoxing, Ge Xueliang, et al.In: International Confe-rence on Climate Change and Water. Nanjing, 2010, pp. 32.
17 Lu Cairong, Ge Xueliang, Mei Guoxing, et al.Journal of Hydroelectric Engineering, 2013(6),229(in Chinese).
陆采荣,戈雪良,梅国兴,等. 水力发电学报,2013(6),229.
18 Lu Cairong, Ge Xueliang,Mei Guoxing. Materials Research Innovations, 2015(5), 389.
19 Ge Xueliang, Liu Weibao.Advances in Climate Change Research,2015 (5),319(in Chinese).
戈雪良,刘伟宝.气候变化研究进展,2015(5),319.
20 戈雪良,陆采荣,梅国兴,等.中国专利,CN201710717919.6, 2017.
21 Zhang Shiping, Hu Pingchun.Bulletin of the Chinese Ceramic Society, 2011(10),1182(in Chinese).
张士萍,胡平淳.硅酸盐通报, 2011(10),1182.
22 Coussy O, Monteiro P J M.Computers and Geotechnics, 2007,34(4),279.
23 Coussy O, Monteiro P J M.Cement and Concrete Research, 2008,38(1),40.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[3] 李义强, 李智, 赵斌, 刘磊, 蓝群力, 张新天, 卞立波. 多孔质混凝土植被恢复组合结构与材料性能研究[J]. 材料导报, 2020, 34(Z1): 199-202.
[4] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[5] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[6] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[7] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[8] 刘凡, 赵晓明. 聚噻吩及其衍生物PEDOT在吸波领域的应用现状[J]. 材料导报, 2020, 34(Z1): 507-510.
[9] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[12] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[13] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[14] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[15] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed