Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15039-15046    https://doi.org/10.11896/cldb.19040223
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展
栗思琪, 鲁浈浈, 张琪
重庆交通大学土木工程学院,重庆 400074
Research Progress of Graphitic-C3N4 Photocatalytic Materials Doped with Alkali Metals and Alkaline-Earth Metals
LI Siqi, LU Zhenzhen, ZHANG Qi
School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 2844KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相碳化氮(g-C3N4)作为一种成本低廉、化学性质稳定、带隙窄的光催化剂,一直是材料科学领域的研究重点。虽然g-C3N4存在光生载流子复合率高、可见光利用率低、比表面积较小等缺点,但由于其聚合物的本身特性适合制备g-C3N4基复合材料,从而可以通过引入其他化学元素或异质结对g-C3N4进行改进,提高其光催化活性。与非金属共价掺杂不同,碱金属、碱土金属改性g-C3N4具有金属掺杂的非局域化特性,其表面活性位点增多,载流子分离率降低并且能使能带位置发生改变,从而具有较好的光催化性能,因此成为一个新的研究热点。
综合考虑经济性和实用性,目前用来改善g-C3N4性能的碱/碱土金属元素多为锂(Li)、钠(Na)、钾(K)、钡(Ba)、镁(Mg)、钙(Ca)。现有的大部分数据表明,Li、Ca两种元素对g-C3N4的改性效果较好,尤其是Ca元素。同时结合不同制备工艺,如选择不同的前体,采用介孔材料作为催化剂载体,改变制备过程中的加热方式(控制升温速率、煅烧温度和时长),可以使g-C3N4的光催化活性进一步提高。
虽然碱金属、碱土金属改性g-C3N4的理论依据是金属离子的引入会对能带结构和载流子迁移率产生影响,但金属离子与周围原子的相互作用和对能带的调控机理还未明确,实现碱金属/碱土金属可控改性g-C3N4也尚待研究。对碱金属、碱土金属改性g-C3N4的系统研究仍需继续进行大量的实验作为分析验证的基础。
本文对国内外碱金属、碱土金属掺杂改性g-C3N4技术的发展现状进行了总结,归纳了改性g-C3N4的制备方法及应用范围,将改性g-C3N4在实际应用领域(氮氧化合物降解、光解水析氢、有机污染物降解)的光催化活性进行对比,按照掺杂元素种类和数量将其分为单掺杂和复合掺杂,并对其增强机理进行归纳整理,提出了当前碱金属、碱土金属改性g-C3N4发展所面临的问题,并对未来将要进行的工作及发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗思琪
鲁浈浈
张琪
关键词:  碱金属  碱土金属  石墨相碳化氮(g-C3N4)  可见光催化    
Abstract: As a cost-effective, chemical stability, narrow energy band gap photocatalyst,graphitic carbon nitride (g-C3N4) has been noticed in the materials science. Pure g-C3N4 suffers from the fast recombination of photoinduced electron-hole pairs, insufficient sunlight absorption, low surface area. Typically, element doping and heterojunction based on g-C3N4 is known to be an efficient method to improve its photocatalytic performance, because g-C3N4 is polymer which is suitable for preparing composites based on its matrix. Different from the covalent bonding of non-metal doping, alkali metal-doped g-C3N4 and alkali-earth metal-doped g-C3N4 has been a hotspot due to the delocalization of metal doping,which endows the doped system with unique photocatalytic properties by providing more active sites, lowering the recombination of photoinduced electron-hole pairs and changing the band position.
Considering economy and practicality,g-C3N4 modified with alkali metal and alkali-earth metal has been mostly prepared via lithium (Li), So-dium (Na), potassium (K), barium (Ba), magnesium (Mg) and calcium (Ca). The researches show that Li and Ca have better effect on the photocatalytic performance of g-C3N4, especially Ca. Moreover, the photocatalytic activity of g-C3N4 is expected to be further improved by diffe-rent preparation technology, such as different precursors selection, mesoporous material as catalyst carrier, the heating mode selection (controlling the heating rate, temperature and duration).
The theoretical basis of alkali metal-doped or alkali-earth metal-doped g-C3N4 is the introduction of metal ions will have an impact on the band structure and carrier mobility. But the interaction of metal ions with surrounding atoms and the mechanism of modifying bandgap have not been determined, the realization of the controllable modification of alkali metal-doped or alkali-earth metal doped g-C3N4 is still to be studied. The syste-matic research of alkali metal-doped and alkali-earth metal doped g-C3N4 needs lots of experiments to form the basis of analysis and verification.
This review concludes the development status of alkali metal-doped g-C3N4 and alkali-earth metal-doped g-C3N4, and provides elaborate descriptions about the preparation and application of modified g-C3N4. The photocatalytic activities of different modified g-C3N4 in practical application fields (nitrogen oxides removal, photocatalytic hydrogen evolution, degradation of organic pollutants) are compared. According to the types and quantities of doped elements, the catalyst is divided into single-doping and co-doping, and the enhancement mechanism is reorganized. This article presented the crucial issues of alkali metal-doping and alkali-earth metal-doping that need to be addressed in future research.
Key words:  alkali metals    alkaline-earth metals    g-C3N4    visible light photocatalysis
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  U414  
基金资助: 国家杰出青年科学基金(51425801);贵州省科技厅重点项目([2017]2035)
通讯作者:  luzz@foxmail.com   
作者简介:  栗思琪,2018年7月毕业于太原科技大学,获得学士学位,现为重庆交通大学土木工程学院硕士研究生,从事新型光催化材料降解空气污染物的研究。
鲁浈浈,2013年8月毕业于香港城市大学(中国),获得哲学博士学位,现为重庆交通大学土木工程学院副教授,从事新型光催化材料降解空气污染物的研究。
引用本文:    
栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
LI Siqi, LU Zhenzhen, ZHANG Qi. Research Progress of Graphitic-C3N4 Photocatalytic Materials Doped with Alkali Metals and Alkaline-Earth Metals. Materials Reports, 2020, 34(15): 15039-15046.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040223  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15039
1 Mu Q, Zhang S Q.China Environmental Science, 2013, 33(11),2087.2 Xie Y B, Chen J, Li W. Environmental Science, 2014, 35(1),1.3 Ezratty Véronique, Guillossou G, Neukirch C, et al.Environmental Health Perspectives, 2014, 122(8),850.4 Shi X H, Xu X D.Chinese Journal of Geophysics, 2012, 55(10), 3230 (in Chinese).施晓晖,徐祥德. 地球物理学报, 2012, 55(10), 3230.5 Huang Y M, Liu Z R, Chen H, et al.Environmental Science, 2013, 34(4),1236.6 Wang Y, Li L J, Liu Y.Environmental Science, 2012, 33,3685.7 Ravelli D, Dondi D, Fagnoni M, et al.Chemical Society Reviews, 2009, 38(7), 1999.8 Chen C C, Ma W H, Zhao J C.Chemical Society Reviews, 2010, 39(11),4206.9 Palmisano G, Augugliaro V, Pagliaro M, et al.Chemical Communications, 2007, 38(33),3425.10 Li Y, Sun Y J, Ho Winkei, et al.Science Bulletin, 2018, 63(10),609.11 Han Q, WangB, Gao J, et al. ACS Nano. 2016, 10(2),2745.12 Fu Y S, Huang T, Zhang L L, et al. Nanoscale,2015,7(32),13723.13 Zheng Y, Liu J, Liang J, et al.Energy & Environmental Science, 2012. 5(5), 6717.14 Rong X S, Qiu F X, Zhao H, et al.European Journal of Inorganic Che-mistry, 2015, 2015(8),1359.15 Hu, S Z, Ma L, You J G, et al.Applied Surface Science, 2014, 311, 164.16 Li J H, Shen B, Hong Z H, et al.Chemical Communications, 2012, 48(98),12017.17 Shalom Menny, Inal Sahika, Fettkenhauer Christian, et al.Journal of the American Chemical Society, 2013, 135(19),7118.18 Ma M Z, Ma H G, Zeng J F, et al.Journal of Shihezi University, 2016, 57.19 Dilshad Masih, Ma Y Y, Sohrab Rohani.Applied Catalysis B: Environmental, 2017, 206(Complete),556.20 Ma J Z, Wang C X, He H.Applied Catalysis B Environmental, 2016, 184,28.21 Ilias Papailias,Nadia Todorova,Tatiana Giannakopoulou, et al.Catalysis Today, 2017,280,37.22 Bloh J Z, Folli A, Macphee D E.RSC Advance, 2014, 4(86),45726.23 Ilias Papailias, Nadia Todorova, Tatiana Giannakopoulou, et al.Applied Surface Science, 2018,430(1), 225.24 Hang M T, Cheng Y, Song X Q, et al.Chemical World,2019, 60(4), 193 (in Chinese).杭梦婷,成杨,宋晓晴,等. 化学世界, 2019, 60(4), 193.25 Zhang W B, Zhang Z J, Soo Ho Choi, et al.Catalysis Today, 2019, 321-322, 67.26 Jiang J, Cao A W,Hu C L, et al. Chinese Journal of Catalysis, 2017, 38(12), 1981.27 Liu Z M, Zhao Z C, Wang S J, et al.Modern Chemical Industry,2017, 37(7), 96 (in Chinese).刘宗梅,赵朝成,王帅军,等. 现代化工, 2017, 37(7), 96.28 Hu S Z, Li F Y, Fan Z P, et al.Dalton Transactions, 2015, 44(3), 1084.29 Wang Y Y,Zhao S,Zhang Y W, et al. Applied Surface Science,2018,440,258.30 Tang J Y,Zhou W G,Guo R T, et al. Catalysis Communications,2018,107,92.31 Long X Z, Yan T N, Hu T J, et al.Catalysis Letters,2017,147,1922.32 Li M M. Transfer properties of carriers in photocatalytic materials. Master's Thesis, Shandong University, China, 2018(in Chinese).李蒙蒙.光催化材料中载流子的转移性质.硕士学位论文,山东大学,2018.33 Zhang M,Bai X J,Liu D, et al. Applied Catalysis B, Environmental,2015,164,77.34 Zhao J N,Ma L,Wang H Y, et al. Applied Surface Science,2015,332,62.35 Liang H Y, Zou H, Hu S Z, et al.Materials Review B:Research Papers, 2018, 32(12), 4217 (in Chinese).梁红玉, 邹赫, 胡绍争,等. 材料导报:研究篇, 2018, 32(12), 4217.36 Qu X Y, Hu S Z, Bai J, et al.Journal of Materials Science & Technology, 2018,34(10), 1932.37 Guo Y R, Chen T X, Liu Q, et al.The Journal of Physical Chemistry C, 2016, 120(44), 25328.38 Guo Y R, Liu Q, Li Z H, et al. Applied Catalysis B, Environmental, 2018, 221, 362.39 Lu X F, Wang H J, Yang Y, et al.Journal of Materials Science & Technology, 2011, 27(3), 245.40 Liu H H, Chen D L, Wang Z Q, et al.Applied Catalysis B, Environmental, 2017, 203,300.41 Michael J Bojdys, Jens-Oliver Müller, Markus Antonietti, et al. Chemistry-A European Journal, 2008, 14(27), 8177.42 Ma W Z, Wang X Y, Zhang F, et al.Materials Research Bulletin, 2017, 86, 72.
[1] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[2] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[3] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[4] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[5] 林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬. 水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能[J]. 《材料导报》期刊社, 2018, 32(8): 1213-1217.
[6] 梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
[7] 阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏. 类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*[J]. CLDB, 2017, 31(9): 77-80.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed