Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1213-1217    https://doi.org/10.11896/j.issn.1005-023X.2018.08.002
  材料研究 |
水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能
林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬
上海工程技术大学材料工程学院,上海 201620
Enhanced Visible-light Photocatalytic Activity of Hydrothermally Synthesized MoS2/Graphene/N-TiO2 Composites
LIN Xiaojing, SUN Mingxuan, HU Mengyuan, YAO Yuan, WANG Wentao
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620
下载:  全 文 ( PDF ) ( 2939KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化石墨烯(GO)、钼酸、硫脲和TiN为原料,成功制备了MoS2/石墨烯/N-TiO2(MGNT)复合材料。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、X射线光电子能谱(XPS)及紫外-可见漫反射光谱(UV-Vis DRS)等手段测试分析了样品的物相组成、形貌、成分和光吸收性能。紫外-可见漫反射测试结果表明,MoS2、石墨烯共同修饰及氮掺杂使得TiO2的吸收带边发生红移,且其可见光吸收性能明显提高。可见光照射下降解亚甲基蓝溶液的实验结果表明,MoS2/石墨烯共同修饰的氮掺杂TiO2的光催化降解性能分别是氮掺杂TiO2(NT)和石墨烯修饰氮掺杂TiO2(GNT)的1.82倍和1.59倍,其吸附性分别为氮掺杂TiO2、石墨烯修饰氮掺杂TiO2的11.14倍和4.77倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林小靖
孙明轩
胡梦媛
姚远
王文韬
关键词:  二硫化钼  石墨烯  TiO2  协同效应  可见光催化    
Abstract: MoS2/graphene/N-TiO2 composites (MGNT) were prepared using GO, H2MoO4, (NH2)2CS, and TiN as the raw materials. The phase composition, morphology, chemical states of elements, and optical absorption performance were characte-rized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), respectively. An obvious red shift of absorption edge and enhanced intensity were observed for MGNT compared with N-TiO2(NT) and graphene/N-TiO2(GNT). The photocatalytic performance was evaluated via the photodegradation of methylene blue (MB) under visible light irradiation. The results showed that the photocatalytic performance of MGNT was 1.82 and 1.59 times of NT and GNT, respectively. In addition, the absorptivity of MGNT was 11.14 and 4.77 times of NT and GNT.
Key words:  MoS2    graphene    TiO2    synergetic effect    visible-light photocatalysis
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  O649.4  
基金资助: 上海市教育委员会科研创新项目(15ZZ092);上海市青年教师培养资助计划(ZZgcd14010);上海工程技术大学科研启动资助项目(2014-22);2016年国家级大学生创新训练项目(201610856017)
通讯作者:  孙明轩:通信作者,男,1983年生,博士,副教授,主要研究方向为纳米功能材料的制备、修饰及光电和光催化性能 E-mail:mingxuansun@sues.edu.cn;smxalan@163.com   
作者简介:  林小靖:女,1994年生,硕士研究生,主要研究方向为纳米功能材料的制备及光催化性能
引用本文:    
林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬. 水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能[J]. 《材料导报》期刊社, 2018, 32(8): 1213-1217.
LIN Xiaojing, SUN Mingxuan, HU Mengyuan, YAO Yuan, WANG Wentao. Enhanced Visible-light Photocatalytic Activity of Hydrothermally Synthesized MoS2/Graphene/N-TiO2 Composites. Materials Reports, 2018, 32(8): 1213-1217.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.002  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1213
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37.
2 Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results[J].Chemical Reviews,1995,95:735.
3 Fujishima A, Zhang X, Tryk D. TiO2 photocatalysis and related surface phenomena[J].Surface Science Reports,2008,63:515.
4 Li J L, Xiong L. The research progress of grapherne synthesis me-thods[J].Journal of Applied Biomaterials & Functional Materials,2012,43(23):3185.
5 William S, Hummers J, Richard E, et al. Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
6 Sun M X, Ma X Q, Chen X, et al. A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties[J].RSC Advances,2014,4:1120.
7 Han W J, Ren L, Gong L J, et al. Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J].ACS Sustainable Chemistry & Engineering,2014,2:741.
8 Ho W K, Yu J C, Lin J, et al.Preparation and photocatalytic beha-vior of MoS2 and WS2 nanocluster sensitized TiO2[J].Langmuir,2004,20:5865.
9 Han W J, Zang C, Huang Z Y, et al. Enhanced photocatalytic acti-vities of three-dimensional graphene-based aerogel embedding TiO2 nanoparticles and loading MoS2 nanosheets as co-catalyst[J].International Journal of Hydrogen Energy,2014,39:19502.
10 Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J].Journal of the American Chemical Society,2012,134:6575.
11 Luo Z, Jiang H, Li D, et al. Improved photocatalytic activity and mechanism of Cu2O/N-TiO2 prepared by a two-step method[J].RSC Advances,2014,4:17797.
12 Sun M X, Fang Y L, Wang Ying, et al. Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity[J].Journal of Alloys and Compounds,2015,650:520.
13 Wang Y, Sun M X, Fang Y L, et al. Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS[J].Journal of Materials Science,2016,51:779.
14 Sun M X , Fang Y L, Sun S F, et al. Surface co-modification of TiO2 with N doping and Ag loading for enhanced visible-light photoactivity[J].RSC Advances,2016,6:12272.
15 Sun S F, Sun M X, Fang Y L, et al. One-step in situ calcination synthesis of g-C3N4/N-TiO2 hybrids with enhanced photoactivity[J].RSC Advances,2016,6:13063.
16 Fang Y L, Sun M X, Wang Y, et al. Cu2O decorated carbon-incorporated TiO2 microspheres with enhanced visible light photocatalytic activity[J].Materials Research Bulletin,2016,74:265.
17 Sun M X, Wang Y, Fang Y L, et al. Construction of MoS2/CdS/TiO2 ternary composites with enhanced photocatalytic activity and stability[J].Journal of Alloys and Compounds,2016,684:335.
18 Sun S F, Sun M X, Kong Y Y, et al. MoS2 and graphene as dual, cocatalysts for enhanced visible light photocatalytic activity of Fe2O3[J].Journal of Sol-Gel Science and Technology,2016,80:719.
19 Sun M X, Fang Y L, Kong Y Y, et al. Direct in situ synthesis of Fe2O3-codoped N-doped TiO2 nanoparticles with enhanced photoca-talytic and photo-electrochemical properties[J].Journal of Alloys and Compounds,2017,705:89.
20 Sun M X, Li W B, Sun S F, et al. One-step in situ synthesis of graphene-TiO2 nanorod hybrid composites with enhanced photocatalytic activity[J].Materials Research Bulletin,2015,61:280
21 Fang Y L, Sun M X, Wang Y, et al. N-TiO2 nanoparticles prepared by calcining TiN: Phase composition and optical absorption perfor-mance[J].Materials Review B:Research,2016,30(4):24(in Chinese).
方亚林,孙明轩,王莹,等.煅烧TiN制备N掺杂TiO2及其物相和光吸收性能的研究[J].材料导报:研究篇,2016,30(4):24.
22 Lin X J, Sun M X, Hu M Y, et al. Preparation and photocatalytic activity of graphene modified N-TiO2 nanomaterials[J].Materials Review B:Research,2016,30(9):16(in Chinese).
林小靖,孙明轩,胡梦媛,等.石墨烯修饰氮掺杂TiO2纳米材料的制备及其光催化性能[J].材料导报:研究篇,2016,30(9):16.23 Wang H, Yan J, Chang W, et al. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2[J].Catalysis Communications,2009,10:989.
24 Wu Z, Dong F, Zhao W, et al. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride[J].Journal of Hazardous Materials,2008,157:57.
25 柳清,毕世华,曹茂盛.石墨烯吸附性能的研究进展[J].化工管理,2015(12):119.
26 Xue S J, Lan X Z, Zhou J, et al. Advances in the preparation of different morphology nano-sized molybdenum disulfide[J].Ordnance Material Science and Engineering,2010,33(3):88(in Chinese).
薛首峰,兰新哲,周军,等.不同形貌纳米二硫化钼制备的研究进展[J].兵器材料科学与工程,2010,33(3):88.
27 Chen X Y, Zhou H, Huang Y K, et al. Preparation of MoS2 and its absorption property for methyl orange[J].Journal of Liaodong University(Natural Sciences),2015(4):0229(in Chinese).
陈秀云,周欢,黄永葵,等.MoS2的制备及其吸附甲基橙性能[J].辽东学院学报(自然科学版),2015(4):0229.
28 Jiang B J, Tian C G, Pan Q, et al. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets[J].The Journal of Physical Chemistry C,2011,115(48):23718.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[7] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[8] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[9] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[12] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[13] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed