Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22060141-8    https://doi.org/10.11896/cldb.22060141
  高分子与聚合物基复合材料 |
2-氨基烟酸镧铈对PVC热稳定性的影响
杨羽轩1,2,3, 杜桂芳1,2,3, 柳召刚1,2,3,*, 赵金钢1,2,3, 陈明光1,4, 胡艳宏1,2,3, 吴锦绣1,2,3, 冯福山1,2,3
1 内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
2 内蒙古自治区稀土湿法冶金与轻稀土应用重点实验室,内蒙古 包头 014010
3 轻稀土资源绿色提取与高效利用教育部重点实验室,内蒙古 包头 014010
4 包头稀土研究院,内蒙古 包头 014030
Effect of Lanthanum Cerium 2-Aminonicotinate Acid on Thermal Stability of PVC
YANG Yuxuan1,2,3, DU Guifang1,2,3, LIU Zhaogang1,2,3,*, ZHAO Jingang1,2,3, CHEN Mingguang1,4, HU Yanhong1,2,3, WU Jinxiu1,2,3, FENG Fushan1,2,3
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Key Laboratory of Rare Earth Hydrometallurgy and Light Rare Earth Application of Inner Mongolia Autonomous Region, Baotou 014010, Inner Mongolia, China
3 Key Laboratory of green extraction and efficient utilization of LREE resources, Ministry of education, Baotou 014010, Inner Mongolia, China
4 Baotou Research Institute of Rare Earth, Baotou 014030, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 11554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以2-氨基烟酸(2-ANA)、Ce(NO3)3、La(NO3)3和NaOH为原料,合成出2-氨基烟酸镧铈(2-LCANA),研究2-LCANA及其复配稳定剂对聚氯乙烯(PVC)热稳定性能、流变性能和力学性能的影响。结果表明,2-LCANA及其复配稳定剂提高了PVC的热稳定性能,当m(2-LCANA)∶m(ZnSt2)∶m(PE)=2∶1∶2时,其热稳定时间为38 min,可以减小在加工过程中的损耗,增强PVC的力学性能,但是随着温度升高2-LCANA要比m(2-LCANA)∶m(ZnSt2)∶m(PE)=2∶1∶2的复配稳定剂抑制PVC降解反应发生更有效。2-LCANA能够吸收PVC降解释放的HCl气体,生成LaCl3和CeCl3,减弱了HCl对PVC降解的催化作用,可以有效地阻止PVC链上C-Cl和与氯相连的C-H断裂,减少共轭双键的生成,减缓PVC变色,延缓了PVC的热降解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨羽轩
杜桂芳
柳召刚
赵金钢
陈明光
胡艳宏
吴锦绣
冯福山
关键词:  2-氨基烟酸镧铈  聚氯乙烯  热稳定性能  降解  协同效应    
Abstract: Lanthanum cerium 2-aminonicotinate acid was synthesized from 2-aminonicotinic acid(2-ANA), Ce(NO3)3, La(NO3)3 and NaOH. The effects of 2-LCANA and its compound stabilizer on the thermal stability, rheological and mechanical properties of polyvinyl chloride (PVC) were studied. The results showed that 2-LCANA and its compound stabilizer improved the thermal stability of PVC. When m(2-LCANA)∶m(ZnSt2)∶m(PE)=2∶1∶2, the thermal stability time was 38 min, which could reduce the loss in the processing process and enhance the mechanical properties of PVC. However, with the increase of temperature, 2-LCANA was more effective than m(2-LCANA)∶m(ZnSt2)∶m(PE)=2∶1∶2 in inhibiting the degradation of PVC. 2-LCANA can absorb HCl gas released from PVC degradation, generate LaCl3 and CeCl3, wea-ken the catalytic effect of HCl on PVC degradation, effectively prevent the breakage of C-Cl and C-H connected with chlorine on PVC chain, reduce the generation of conjugated double bonds, slow down PVC discoloration, and delay the thermal degradation of PVC.
Key words:  lanthanum cerium 2-aminonicotinate acid    polyvinyl chloride    thermal stability    degradation    synergistic effect
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TQ325.3  
基金资助: 国家自然科学基金(51634005);内蒙古自治区自然科学基金项目(2022LSM05022)
通讯作者:  柳召刚,内蒙古科技大学材料与冶金学院教授,硕士研究生导师,中国稀土学会理事,中国稀土学会稀土化学与湿法冶金专业委员会委员。1987年兰州大学化学系本科毕业后到包头稀土研究院湿法研究室工作,1996年东北大学有色金属冶金系硕士毕业,2006年调入内蒙古科技大学材料与冶金学院工作。主要从事稀土湿法冶金与稀土功能性助剂的研究。发表论文120余篇。liuzg65@163.com   
作者简介:  杨羽轩,2018年6月、2022年6月分别于北京交通大学海滨学院和内蒙古科技大学获得工学学士学位和硕士学位。硕士期间研究方向:稀土功能性助剂。目前发表5篇论文。曾获得国家奖学金。
引用本文:    
杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
YANG Yuxuan, DU Guifang, LIU Zhaogang, ZHAO Jingang, CHEN Mingguang,
HU Yanhong, WU Jinxiu, FENG Fushan. Effect of Lanthanum Cerium 2-Aminonicotinate Acid on Thermal Stability of PVC. Materials Reports, 2024, 38(7): 22060141-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060141  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22060141
1 Mohame N A. Polymer Degradation and Stability, 2017, 146, 42.
2 Stranes W H. Progress in Polymer Science, 2002, 27(10), 2133.
3 Stranes W H. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(12), 2451.
4 Tawfik S Y, Asaad J N, Sabaa M W. Polymer Degradation & Stability, 2006, 91(2), 385.
5 Fisch M H, Bacalouglu R. Plastics, Rubber and Composites, 1999, 28(3), 119.
6 Newman E J, Stark T D. Geosynthetics International, 2009, 16(2), 97.
7 Grivel J C, Zhao Y, Guevara MJ S, et al. Thermochimica Acta, 2015, 612, 1.
8 Ye F, Ye Q, Guo X, et al. Journal of Vinyl and Additive Technology, 2019, 25(4), 347.
9 Li M, Liang Y D, Wu Y X, et al. Polymer Degradation & Stability, 2017, 140, 176.
10 Atakul S, Balköse D, Ülkü S. Journal of Vinyl and Additive Technology, 2005, 11(2), 47.
11 Zhang M Q, Han W Y, Hu X M, et al. Polymer Degradation and Stability, 2020, 181, 109340.
12 Li D, Xie L, Ming F, et al. Polymer Degradation and Stability, 2015, 114, 52.
13 Hao L, Li D, Li R. Engineering Plastics Application, 2016, 44(12), 131 (in Chinese).
刘浩, 李德刚, 李瑞姣. 工程塑料应用, 2016, 44(12), 131.
14 Liu F, Li J, Shi K. Polyvinyl Chloride, 2011, 39(8), 19 (in Chinese).
刘芳, 李杰, 时凯. 聚氯乙烯, 2011, 39(8), 19.
15 An L M, Song X X, Cao X. Plastics Additives, 2013(3), 30(in Chinese).
安立梅, 宋小弦, 曹雄. 塑料助剂, 2013(3), 30.
16 Ding H. Study on the synthesis and application of rare-earth as new thermal stabilizer for PVC. Master’s Thesis, Xi’an University of Science and Technology, China, 2008 (in Chinese).
丁贺. PVC新型稀土热稳定剂的合成与应用研究. 硕士学位论文, 西安科技大学, 2008.
17 Zhang N, Zhang Q, Zhang H X, et al. Plastics, 2017, 46(1), 63 (in Chinese).
张宁, 张青, 张红霞, 等. 塑料, 2017, 46(1), 63.
18 Wang S S. Study on blended modification of PVC composite material. Master’s Thesis, South China University of Technology, China, 2014 (in Chinese).
王莎莎. PVC复合材料共混改性研究. 硕士学位论文, 华南理工大学, 2014.
19 Hao L, Li D, Li R, et al. Journal of Vinyl and Additive Technology, 2018, 24(4), 314.
20 Abbas K B, Sorvik E M. Journal of Vinyl Technology, 1980, 2(2), 87.
21 Mackenzie M W, Willis H A, Owen R C, et al. European Polymer Journal, 1983, 19(6), 511.
22 Vrandecic N S, Klaric I, Roje U. Polymer Degradation & Stability, 2001, 74(2), 203.
23 Xu X P. Design, preparation, application and stabilizing mechanism of urea derivatives as novel thermal stabilizers for poly(vinyl chloride). Ph. D. Thesis, College of Materials Science and Engineering Zhejiang University of Technology, China, 2015 (in Chinese).
徐晓鹏. 新型多功能脲衍生物类PVC热稳定剂的设计、制备、应用及稳定机理研究. 博士学位论文, 浙江工业大学, 2015.
[1] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[2] 齐亚兵, 贾宏磊. 活化亚硫酸(氢)盐降解有机污染物的研究进展[J]. 材料导报, 2024, 38(3): 22060274-13.
[3] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[4] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[5] 刘洋, 马占营, 李午戊, 郭乃妮, 侯磊, 樊星宇, 王樱嫒, 王尧宇. 多羧酸镍配合物催化降解罗丹明B的活性与机理[J]. 材料导报, 2024, 38(16): 24030040-6.
[6] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[7] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[8] 吴鹏飞, 崔华帅, 朱金唐, 史贤宁, 崔宁, 李杰, 黄庆. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J]. 材料导报, 2024, 38(13): 22120143-6.
[9] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[10] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[11] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[12] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[13] 李航, 廖建国, 毛艳瑞, 阮文强. 纳米羟基磷灰石对氯氧镁水泥降解性和体外生物活性的影响[J]. 材料导报, 2023, 37(24): 22020189-5.
[14] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[15] 许松江, 许志彦, 侯泽明, 宝冬梅, 周国永, 邹光龙. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22): 22070044-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed