Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060274-13    https://doi.org/10.11896/cldb.22060274
  无机非金属及其复合材料 |
活化亚硫酸(氢)盐降解有机污染物的研究进展
齐亚兵1,*, 贾宏磊2
1 西安建筑科技大学化学与化工学院,西安 710055
2 浙江先锋科技股份有限公司质保部,浙江 台州 317000
Research Advances of Degradation of Organic Pollutants by Activated Sulfite or Hydrosulfite
QI Yabing1,*, JIA Honglei2
1 School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Quality Assurance Department, Zhejiang Xianfeng Technologies Co., Ltd., Taizhou 317000, Zhejiang, China
下载:  全 文 ( PDF ) ( 2529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与过硫酸盐相比,亚硫酸(氢)盐价格低廉,来源广泛,毒性更低。活化亚硫酸(氢)盐过程不但可产生强氧化性的SO4·-和SO5·-,还可产生兼具氧化性和还原性的SO3·-,因此,活化亚硫酸(氢)盐在降解有机污染物的同时可实现自身的氧化,不会造成二次污染,具有广阔的发展前景。活化亚硫酸(氢)盐的方式主要包括光活化、过渡金属活化、炭质材料活化和电化学活化等。本文简述了活化亚硫酸(氢)盐的机制,综述了活化亚硫酸(氢)盐降解有机污染物的研究进展,解析了活化亚硫酸(氢)盐降解有机污染物的影响因素,分析了活化亚硫酸(氢)盐降解有机污染物存在的问题,展望了活化亚硫酸(氢)盐降解有机污染物的发展趋势,以期为相关学者的后续研究工作提供一定的参考。目前活化亚硫酸(氢)盐降解有机污染物技术还处于实验室研究阶段,未见相关工业应用的报道。假以时日,如若技术成熟,活化亚硫酸(氢)盐在有机污染物的降解领域必将占有一席之地。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐亚兵
贾宏磊
关键词:  高级氧化技术  亚硫酸(氢)盐  活化  降解  自由基  有机污染物    
Abstract: Compared to persulfate, sulfite (hydrosulfite) has lower price, more sources, and lower toxicity. During the activation of sulfite, not only the highly oxidizing free radicals such as SO4·-and SO5·- are produced, but also SO3·- which possesses oxidizability and reducibility is generated. Therefore, its autoxidation is realized when degradation of organic pollutants by activated sulfite (hydrosulfite), leading to no secondary pollution and broad development prospects. Activation pattern of sulfite (hydrosulfite) mainly contains activation of light, transition metals, carbon mate-rials and electrodes. In this paper, we review the activation mechanism of sulfite (hydrosulfite), summarize the research progress on degradation of organic pollutants by activated sulfite (hydrosulfite), sketch the influencing factors of degradation of organic pollutants by activated sulfite (hydrosulfite), analyze the existing problems of degradation of organic pollutants by activated sulfite (hydrosulfite), and discuss the deve-lopment trends of degradation of organic pollutants by activated sulfite (hydrosulfite). It can provide direction and guidance for subsequent research. At present, this technology is still at the experimental stage and the related industrial application has not been reported. In future, once the technology becomes mature, it will occupy a place in field of degradation of organic pollutants.
Key words:  advanced oxidation process    sulfite(hydrosulfite)    activation    degradation    free radical    organic pollutant
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  X703  
基金资助: 西安市碑林区科技计划项目(GX2134);西安建筑科技大学人才科技基金(RC1714);西安建筑科技大学青年科技基金(QN1509);西安建筑科技大学大学生创新创业训练计划项目(X2022189)
通讯作者:  *齐亚兵,西安建筑科技大学化学与化工学院讲师。2006年本科毕业于长安大学水利与环境学院,2009年和2013年分别在四川大学化工学院获得硕士和博士学位。2013年8月进入陕西化工研究院有限公司工作,2014年5月调入西安建筑科技大学应用化学系任教。目前主要从事传质与分离技术、水处理技术等方面的研究工作。近年来在SCI、EI和中文核心期刊发表论文40余篇。 qiyabing123@163.com   
引用本文:    
齐亚兵, 贾宏磊. 活化亚硫酸(氢)盐降解有机污染物的研究进展[J]. 材料导报, 2024, 38(3): 22060274-13.
QI Yabing, JIA Honglei. Research Advances of Degradation of Organic Pollutants by Activated Sulfite or Hydrosulfite. Materials Reports, 2024, 38(3): 22060274-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060274  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22060274
1 Jia Y P, Xue D Q, Liu Q F, et al. Chemical Industry and Engineering Progress, 2022, 41(1), 418(in Chinese).
贾艳萍, 薛东奇, 刘启帆, 等. 化工进展, 2022, 41(1), 418.
2 Chen M R, Ma K K, Zhou L. Industrial Water Treatment, 2022, 42(6), 109(in Chinese).
陈明如, 马可可, 周律. 工业水处理, 2022, 42(6), 109.
3 Guo Y G, Lou X Y, Fang C G, et al. Environmental Science & Technology, 2013, 47(19), 11174.
4 Zhou D N, Chen L, Li J J, et al. Chemical Engineering Journal, 2018, 346, 726.
5 Guo Y Z. Efficiency and mechanism of sulfate radical-based advanced oxidation process on treating dye wastewater. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2016(in Chinese).
郭一舟. 基于硫酸根自由基高级氧化技术处理染料废水效能及机理研究. 博士学位论文, 华中科技大学, 2016.
6 Wu S H, Shen L Y, Lin Y, et al. Chemical Engineering Journal, 2021, 414, 128872.
7 Qiao J L, Feng L Y, Dong H Y, et al. Environmental Science & Techno-logy, 2019, 53, 10320.
8 Xiao Q, Wang T, Yu S L, et al. Water Research, 2017, 111, 288.
9 Entezari M, Godini H, Sheikhmohammadi A, et al. Journal of Water Process Engineering, 2019, 32, 100983.
10 Milh H, Yu X Y, Cabooter D, et al. Science of the Total Environment, 2021, 764, 144510.
11 Liu Z Q, Qiu F G, Lai M T, et al. Environmental Science, 2021, 42(3), 1443(in Chinese).
刘子奇, 仇付国, 赖曼婷, 等. 环境科学, 2021, 42(3), 1443.
12 Zhang J, Zhang H L, Liu X, et al. Water Research, 2022, 210, 117974.
13 Yu X Y, Cabooter D, Dewil R. Science of the Total Environment, 2019, 688, 65.
14 Xie B H, Li X C, Huang X F, et al. Journal of Environmental Sciences, 2017, 54, 231.
15 Yu K, Li X C, Chen L W, et al. Water Research, 2018, 129, 357.
16 Liu S L, Fu Y S, Wang G S, et al. Separation and Purification Technology, 2021, 268, 118709.
17 Jung B, Farzaneh H, Khodary A, et al. Journal of Environmental Chemical Engineering, 2015, 3, 2194.
18 Sheikhmohammadi A, Yazdanbakhsh A, Moussavi G, et al. Process Safety and Environmental Protection, 2019, 123, 263.
19 Yazdanbakhsh A, Eslami A, Moussavi G, et al. Chemosphere, 2018, 191, 156.
20 Tian Y, Shen W J, Jia F L, et al. Chemical Engineering Journal, 2017, 330, 1075.
21 Azarpira H, Abtahi M, Sadani M, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 43.
22 Mahmoudi S, Fadaei S, Taheri E, et al. Environmental Research, 2022, 211, 113059.
23 Entezari M, Godini H, Sheikhmohammadi A, et al. Journal of Water Process Engineering, 2019, 32, 100983.
24 Yu Y T, Li S Q, Peng X Z, et al. Environmental Chemistry Letters, 2016, 14, 527.
25 Wang G S. Degradation of sulfamethoxazole in water using UV combine with Fe3+ activation of sulfite. Master's Thesis, Southwest Jiaotong University, China, 2020(in Chinese).
王广生. UV协同Fe3+活化亚硫酸盐对水中磺胺甲恶唑的降解研究. 硕士学位论文, 西南交通大学, 2020.
26 Huang Y, Han C, Liu Y Q, et al. Applied Catalysis B: Environmental, 2018, 221, 380.
27 Li K J, Fang X Z, Fu Z Y, et al. Journal of Hazardous Materials, 2020, 398, 123007.
28 Cao J, Nie W S, Huang L, et al. Applied Catalysis B: Environmental, 2019, 241, 18.
29 Zhang Y L, Chu W. Separation and Purification Technology, 2022, 291, 120900.
30 Zhao G S, Ding J, Ren J Y, et al. Chemical Engineering Journal, 2022, 438, 135663.
31 Deng X Y, Chen R, Zhao Z W, et al. Chemical Engineering Journal, 2021, 425, 131683.
32 Abdelhaleem A, Chu W, Farzana S. Chemosphere, 2020, 256, 127094.
33 Chen F, Yang Q, Yao F B, et al. Chemical Engineering Journal, 2019, 355, 624.
34 Li G, Wang C, Yan Y P, et al. Chemical Engineering Journal, 2020, 386, 124007.
35 Xie P C, Zhang L, Chen J H, et al. Water Research, 2019, 149, 169.
36 Wang Z P, Cao L S, Wan Y, et al. Chemosphere, 2021, 285, 131442.
37 Zhang M M. Experimental study on sulfite induced catalytic degradation of organic pollutants in water. Master's Thesis, North China Electric Power University, China, 2021(in Chinese).
张萌萌. 亚硫酸盐诱导催化降解水体有机污染物的实验研究. 硕士学位论文, 华北电力大学, 2021.
38 Li R, Dong H R, Tian R, et al. Separation and Purification Technology, 2020, 250, 117230.
39 Chen X Y, Miao W, Yang Y L, et al. Chemosphere, 2020, 238, 124599.
40 Zhang L. Study on the degradation of tetrabromobisphenol A by Fe(Ⅲ)/S(Ⅳ) system. Master's Thesis, Huazhong University of Science and Technology, China, 2019(in Chinese).
张立. Fe(Ⅲ)/S(Ⅳ)体系降解四溴双酚A效能及机理研究. 硕士学位论文, 华中科技大学, 2019.
41 Dong H Y, Wei G F, Yin D Q, et al. Journal of Hazardous Materials, 2020, 384, 121497.
42 Wang H B, Feng S, Wan L, et al. Environmental Chemistry, 2022, 41(2), 729(in Chinese).
王鸿斌, 冯姝, 万俐, 等. 环境化学, 2022, 41(2), 729.
43 Chen Y Q, Tong Y, Xue Y W, et al. Chemical Engineering Journal, 2020, 385, 123884.
44 Chen Y Q, Zeng B T, Lai L X, et al. Chemical Engineering Journal, 2022, 441, 135960.
45 Yang Y, Sun M Y, Zhou J, et al. Chemosphere, 2020, 244, 125588.
46 Huang L Z, Wei X L, Gao E L, et al. Applied Catalysis B: Environmental, 2020, 268, 118459.
47 Li G, Guo Y Q, Jin Y X, et al. Chemical Engineering Journal, 2021, 426, 131917.
48 Yuan G M, Pi R B, Wu Z C, et al. Chemical Industry and Engineering Progress, 2020, 39(9), 3794(in Chinese).
袁光明, 皮若冰, 吴钊成, 等. 化工进展, 2020, 39(9), 3794.
49 Chen Y Q, Li M Y, Tong Y, et al. Chemical Engineering Journal, 2019, 368, 495.
50 Shao B B, Dong H Y, Feng L Y, et al. Journal of Hazardous Materials, 2020, 384, 121303.
51 Sun M Y, Huang W Y, Cheng H, et al. Chemosphere, 2019, 228, 595.
52 Zhao X D, Wu W J, Jing G H, et al. Environmental Pollution, 2020, 260, 114038.
53 Liu Z Z, Yang S J, Yuan Y N, et al. Journal of Hazardous Materials, 2017, 324, 583.
54 Yang T, Wu S S, Mai J M, et al. Chemical Engineering Journal, 2022, 442, 136011.
55 Yuan Y N, Zhao D, Li J J, et al. Catalysis Today, 2018, 313, 155.
56 Wu Y, Xing Y Y, Zhao X D, et al. Chemical Engineering Journal, 2022, 429, 132404.
57 Ding W, Xiao W L, Huang W X, et al. Journal of Cleaner Production, 2020, 257, 120457.
58 Quan X Q, Xu P Y, Yang F, et al. Journal of Molecular Catalysis(China), 2019, 33(6), 561(in Chinese).
权晓琪, 许佩瑶, 杨帆, 等. 分子催化, 2019, 33(6), 561.
59 Zhu S R, Yang J N, Liu Y, et al. Materials Chemistry and Physics, 2020, 249, 123123.
60 Zhang C X, Liao X P, Lü Y, et al. Journal of Earth Science, 2019, 30(4), 861.
61 Sun B, Guan X H, Fang J Y, et al. Environmental Science & Technology, 2015, 49, 12414.
62 Zhong S F, Zhang H C. Water Research, 2019, 148, 198.
63 Sun B, Li D, Linghu W S, et al. Chemical Engineering Journal, 2018, 339, 144.
64 Shi Z Y, Jin C, Zhang J, et al. Chemical Engineering Journal, 2019, 359, 1463.
65 Dong Q X, Dong H R, Li Y J, et al. Journal of Hazardous Materials, 2022, 431, 128601.
66 Xiao B, Wu M, Wang Y, et al. Chemical Engineering Journal, 2021, 406, 126693.
67 Luo Y J. Degradation efficiency and mechanism of the Cu(Ⅱ) activated sulfite system for iodinated X-ray contrast media. Master's Thesis, Hunan University, China, 2020(in Chinese).
罗玉杰. Cu(Ⅱ)活化亚硫酸盐体系对碘代造影剂的降解效能及机理研究. 硕士学位论文, 湖南大学, 2020.
68 Luo T, Yuan Y N, Zhou D N, et al. Chemical Engineering Journal, 2019, 363, 329.
69 Savarimuthu I, Susairaj M J A M. ACS Omega, 2022, 7, 4140.
70 Tong R M, Fu R, Yang Z, et al. Journal of Environmental Chemical Engineering, 2022, 10, 107276.
71 Wu W J, Zhao X D, Jing G H, et al. Science of the Total Environment, 2019, 695, 133836.
72 Hu B S. Study on sulfite related advanced oxidation system and its treatment performance to wastewater. Master's Thesis, Jilin University, China, 2018(in Chinese).
呼博识. 基于SO32-的高级氧化体系处理废水的性能研究. 硕士学位论文, 吉林大学, 2018.
73 Yuan Y N. Oxidation of organic compounds in the transition metal ion-sactivated sulfite systems. Ph. D. Thesis, Wuhan University, China, 2018(in Chinese).
袁亚男. 过渡金属活化亚硫酸盐体系氧化有机污染物的研究. 博士学位论文, 武汉大学, 2018.
74 Dong H Y, Wei G F, Fan W J, et al. Chemosphere, 2018, 196, 593.
75 Yan S, Zhang C W, Hu B S, et al. Journal of Central South University(Science and Technology), 2018, 49(10), 2391(in Chinese).
闫松, 张成武, 呼博识, 等. 中南大学学报(自然科学版), 2018, 49(10), 2391.
76 Zhang K K, Sun P, Zhang Y, et al. Science of the Total Environment, 2020, 749, 142086.
77 Wu D M, Ye P, Wang M Y, et al. Journal of Hazardous Materials, 2018, 352, 148.
78 Xu Z H, Gao Y Q, Gu H, et al. Separation and Purification Technology, 2021, 268, 118615.
79 Xu J, Wang X R, Pan F, et al. Chemical Engineering Journal, 2018, 353, 542.
80 Chu D D, Dong H R, Li Y J, et al. Separation and Purification Techno-logy, 2022, 285, 120315.
81 Xiao W L. Study on electro-assisted cobalt-silicon catalyst activated sulfite system. Master's Thesis, Chongqing University, China, 2020(in Chinese).
肖伟龙. 电促进钴硅催化剂活化亚硫酸盐体系的基础研究. 硕士学位论文, 重庆大学, 2020.
82 Ding W, Xiao W L, Zheng H L, et al. Chemical Engineering Journal, 2020, 402, 126168.
83 Song G, Zhou M H, Du X D, et al. ACS EST Water, 2021, 1, 1637.
84 Chu L G, Sun Z Y, Cang L, et al. Chemical Engineering Journal, 2020, 400, 125945.
85 Jia L X, Pei X W, Yang F, et al. Water, 2019, 11, 1608.
86 Xiao Q, Yu S L. Chemical Engineering Journal, 2021, 417, 129115.
87 Cao Y, Qiu W, Li J, et al. Science of the Total Environment, 2021, 765, 142762.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[3] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[4] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[5] 韩跃鸣, 代朝猛, 段艳平, 刘曙光, 张亚雷. 含过氧键化合物在土壤及地下水PAHs污染修复中的应用进展[J]. 材料导报, 2024, 38(6): 22080204-7.
[6] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[7] 谭盐宾, 李林香, 杨珍珍, 邢梓达, 林炘恺, 葛昕, 杨鲁, 元强. 化学活化方法对磨细火山岩弃渣-水泥复合胶凝体系的影响[J]. 材料导报, 2024, 38(22): 24030103-7.
[8] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[9] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[10] 刘洋, 马占营, 李午戊, 郭乃妮, 侯磊, 樊星宇, 王樱嫒, 王尧宇. 多羧酸镍配合物催化降解罗丹明B的活性与机理[J]. 材料导报, 2024, 38(16): 24030040-6.
[11] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[12] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[13] 吴鹏飞, 崔华帅, 朱金唐, 史贤宁, 崔宁, 李杰, 黄庆. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J]. 材料导报, 2024, 38(13): 22120143-6.
[14] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[15] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed