Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22080204-7    https://doi.org/10.11896/cldb.22080204
  高分子与聚合物基复合材料 |
含过氧键化合物在土壤及地下水PAHs污染修复中的应用进展
韩跃鸣1, 代朝猛1,*, 段艳平2, 刘曙光1, 张亚雷3
1 同济大学土木工程学院,上海 200092
2 上海师范大学环境与地理科学学院,上海 200233
3 同济大学环境科学与工程学院,上海 200092
Application Progress of Peroxybond Compounds in Remediation of PAHs Pollution in Soil and Groundwater
HAN Yueming1, DAI Chaomeng1,*, DUAN Yanping2, LIU Shuguang1, ZHANG Yalei3
1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China
3 School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 4156KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 土壤及地下水中多环芳烃(PAHs)污染的修复治理是当前亟需解决的问题,其中基于含过氧键化合物的高级氧化技术由于对土壤及地下水中PAHs具有高效的降解能力,在近年来受到越来越多的关注。本文重点总结了过氧化氢、过硫酸盐以及过氧乙酸在土壤及地下水中PAHs污染修复方面的研究,从过氧键断裂产生自由基的角度讨论了其活化机制与降解机理,探究了过氧乙酸在土壤及地下水中PAHs污染修复中的应用前景,分析了影响修复效率的主要外部因素。总体来看,不同活化方式所产生的自由基种类有所不同,对PAHs污染的修复效果也有所差异,与此同时,土壤及地下水复杂环境因素对修复效果有着重要的影响。因此在未来的研究中应开发新型活化材料,提高修复效果并降低二次污染,同时需针对不同的土壤及地下水环境选择合适的活化方式,采用表面活性剂增强氧化剂的修复范围,在过氧乙酸修复PAHs污染方面开展更深入的研究。含过氧键化合物修复PAHs污染土壤及地下水是一个值得深入研究的领域,未来具有广阔的应用前景,本综述为此提供了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩跃鸣
代朝猛
段艳平
刘曙光
张亚雷
关键词:  高级氧化技术(AOPs)  过氧键  多环芳烃(PAHs)  土壤及地下水    
Abstract: The remediation and treatment of soil and groundwater contaminated by polycyclic aromatic hydrocarbons (PAHs) is an urgent task that remains to be accomplished. The advanced oxidation technology based on peroxobond compounds has attracted constant attention because of its high efficiency in degrading PAHs in soil and groundwater. This study reviews the research on the application of hydrogen peroxide, persulfate and peracetic acid in remediating PAHs-contaminated soil and groundwater. We discuss the activation and degradation mechanisms from the perspective of free radicals generated by peroxybond breakage, explore the application prospect of peracetic acid in remediating PAHs-polluted soil and groundwater, and analyze the main external factors affecting the remediation efficiency. It is found that the types of free radicals produced vary based on different activation methods, so does their effect on PAHs pollution remediation. Moreover, the remediation effect is affected greatly by the complex environments of soil and groundwater. Therefore, in future research, new activation materials should be developed to improve the remediation effect and reduce secondary pollution. In addition, appropriate activation methods should be chosen based on the specific soil and groundwater environments, and surfactants should be used to expand the remediation range of oxidants. For that, more in-depth studies should be carried out on the remediation of PAHs pollution by peracetic acid. The remediation of PAHs-contaminated soil and groundwater by peroxybond compounds is a fruitful ground for continuing studies and a technology with broad and bright application prospect. This review provides a theoretical basis for such studies.
Key words:  advanced oxidation technologies (AOPs)    peroxy bond    polycyclic aromatic hydrocarbons (PAHs)    soil and groundwater
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  X53  
基金资助: 国家重点研发计划 (2019YFE0114900);国家自然科学基金(42077175);上海市“科技创新行动计划”(19230742400;19ZR1459300)
通讯作者:  *代朝猛,同济大学土木工程学院研究员、博士研究生导师。2011年同济大学环境工程专业博士毕业。主要研究方向为地下水安全保障理论与技术、地下水中污染物迁移转化规律及模拟、新型环境功能材料在地下水安全修复中的应用。在国内外核心期刊上发表论文90余篇,其中SCI收录60余篇(第一作者/通信作者39篇),ESI高被引3篇,总引次2 000余次,H指数26,单篇最高他引190余次。   
作者简介:  韩跃鸣,2017年6月、2020年6月分别于三峡大学和郑州大学获得工学学士学位和硕士学位。现为同济大学土木工程学院博士研究生,在代朝猛研究员的指导下进行研究。目前主要研究领域为土壤及地下水中PAHs污染修复。
引用本文:    
韩跃鸣, 代朝猛, 段艳平, 刘曙光, 张亚雷. 含过氧键化合物在土壤及地下水PAHs污染修复中的应用进展[J]. 材料导报, 2024, 38(6): 22080204-7.
HAN Yueming, DAI Chaomeng, DUAN Yanping, LIU Shuguang, ZHANG Yalei. Application Progress of Peroxybond Compounds in Remediation of PAHs Pollution in Soil and Groundwater. Materials Reports, 2024, 38(6): 22080204-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080204  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22080204
1 Liu Y, Zhou N. Journal of Tongji University (Natural Science), 2018(7), 934 (in Chinese).
刘颖, 周念清. 同济大学学报(自然科学版), 2018(7), 934.
2 Meng X. Study on pollution characteristics of polycyclic aromatic hydrocarbons at a typical iron and steel site in the North. Ph. D. Thesis, China University of Geoscience (Beijing), China, 2020 (in Chinese).
孟祥帅. 我国北方某典型钢铁企业场地多环芳烃(PAHs)污染特征研究. 博士学位论文, 中国地质大学(北京), 2020.
3 Zhang Y, Li S, Zhang H, et al. Acta Agriculturae Zhejiangensis, 2018(10), 1748 (in Chinese).
张杨, 李森, 张宏玲, 等. 浙江农业学报, 2018(10), 1748.
4 Wang J, Wang S. Chemical Engineering Journal, 2018, 334, 1502.
5 Liang C, Huang C, Chen Y. Water Research, 2008, 42(15), 4091.
6 Flotron V, Delteil C, Padellec Y, et al. Chemosphere, 2005, 59(10), 1427.
7 Pan Y. Fenton-like reaction for remediation of polycyclic aromatic hydrocarbon contaminated soil and mechanism of calcium peroxide based fenton-like reactions. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese).
潘玥. 类芬顿技术处理多环芳烃污染土壤及过氧化钙体系的反应机理研究. 博士学位论文, 上海交通大学, 2019.
8 Zhai D, Li D. China Water & Wastewater, 2020(11), 87 (in Chinese).
翟俊, 李达彦. 中国给水排水, 2020(11), 87.
9 Wang T, Qu G, Li J, et al. Vacuum, 2014, 101, 86.
10 Yang S, Wang P, Yang X, et al. Journal of Hazardous Materials, 2010, 179(1-3), 552.
11 Miao D. Microwave-activated persulfate to remediate ethyl-parathion/polycyclic aromatic hydrocarbons from contaminated soil. Master's Thesis, Northwest A&F University, China, 2021 (in Chinese).
苗铎. 微波活化过硫酸盐降解土壤中乙基对硫磷/多环芳烃性能及机理. 硕士学位论文, 西北农林科技大学, 2021.
12 Lominchar M, Santos A, de Miguel E, et al. The Science of the Total Environment, 2018, 622-623(1), 41.
13 An Y. Treatment of soil PAHs by persulfate activated by iron-carbon composites. Master's Thesis, Dalian University of Technology, China, 2021 (in Chinese).
安宇. 铁碳复合物活化过硫酸盐处理土壤多环芳烃. 硕士学位论文, 大连理工大学, 2021.
14 Xu C, Pan W, Feng P, et al. Chemosphere, 2022, 306, 135525.
15 Duan X, Sun H, Kang J, et al. ACS Catalysis, 2015, 5(8), 4629.
16 Hung C, Huang C, Lam S, et al. Journal of Environmental Chemical Engineering, 2020(5), 104440.
17 Alderman A. Journal of Hazardous Materials, 2007(3), 652.
18 Haber F, Weiss J. The Royal Society, 1934, 861(147), 332.
19 Mousset E, Oturan N, van Hullebusch E D, et al. Applied Catalysis B: Environmental, 2014, 160-161(1), 666.
20 Mousset E, Frunzo L, Esposito G, et al. Applied Catalysis B: Environmental, 2016, 180, 189.
21 Lou J, Lu N, Li J, et al. Chemical Engineering Journal, 2012, 180, 99.
22 Wang T, Qu G, Sun Q, et al. Separation and Purification Technology, 2015, 147, 17.
23 Wang H, Guo H, Zhao W, et al. High Voltage Engineering, 2015(10), 3512 (in Chinese).
王慧娟, 郭贺, 赵文信, 等. 高电压技术, 2015(10), 3512.
24 Martínez-Huitle C A, Brillas E. Applied Catalysis B: Environmental, 2009, 87(3-4), 105.
25 Wen D, Guo X, Li Q, et al. Journal of Hazardous Materials, 2022, 423, 127199.
26 Wu C, Zhao W, Wang H, et al. High Voltage Engineering, 2015(1), 257 (in Chinese).
吴春笃, 赵文信, 王慧娟, 等. 高电压技术, 2015(1), 257.
27 Xu Y. Research on the effect of degradation of polycyclic aromatic hydrocarbon pollution in soil by advanced oxidation technology of sulfate free radicals. Master's Thesis, Nanjing Agricultural University, China, 2019 (in Chinese).
徐源洲. 硫酸根自由基高级氧化技术降解土壤多环芳烃污染的效果研究. 硕士学位论文, 南京农业大学, 2019.
28 Peluffo M, Mora V C, Morelli I S, et al. Geoderma, 2018, 317, 8.
29 Suslick K, Flannigan D. Annual Review of Physical Chemistry, 2008, 59(1), 659.
30 Wei Z, Villamena F A, Weavers L K. Environmental Science & Technology, 2017, 51(6), 3410.
31 Rodriguez S, Vasquez L, Costa D, et al. Chemosphere, 2014, 101, 86.
32 Zhang X, Francis R, Dutton D, et al. Journal of Wood Chemistry and Technology, 1998, 18(3), 253.
33 Cuervo L, Kozlov Y, Süss-Fink G, et al. Journal of Molecular Catalysis A: Chemical, 2004, 218(2), 171.
34 Cai M, Sun P, Zhang L, et al. Environmental Science and Technology, 2017, 51(24), 14217.
35 Kim J, Du P, Liu W, et al. Environmental Science & Technology, 2020, 54(8), 5268.
36 Kim J, Zhang T, Liu W, et al. Environmental Science and Technology, 2019, 53(22), 13312.
37 Zhou F, Lu C, Yao Y, et al. Chemical Engineering Journal, 2015, 281, 953.
38 Venny W, Gan S, Ng H K. Science of the Total Environment, 2012, 419, 240.
39 Jonsson S, Persson Y, Frankki S, et al. Journal of Hazardous Materials, 2007, 149(1), 86.
40 Lundstedt S, Persson Y, Öberg L. Chemosphere, 2006, 65(8), 1288.
41 Watts R J, Stanton P C, Howsawkeng J, et al. Water Research, 2002, 36(17), 4283.
42 Ren Y, Lin L, Ma J, et al. Applied Catalysis B: Environmental, 2015, 165, 572.
43 Sun J, Song M, Feng J, et al. Environmental Science and Pollution Research, 2012, 19(5), 1536.
44 Wu W, Tian D, Liu T, et al. Chemical Engineering Journal, 2020, 394, 124938.
45 Bogan B W, Trbovic V. Journal of Hazardous Materials, 2003, 100(1-3), 285.
46 Wang T, Lu K, Li J, et al. Environmental Science & Technology, 2010, 44(8), 3105.
47 Gan S, Yap C L, Ng H K, et al. Journal of Hazardous Materials, 2013, 262, 691.
48 Bouzid I, Maire J, Ahmed S I, et al. Chemosphere, 2018, 210, 977.
49 Bouzid I, Maire J, Brunol E, et al. Journal of Environmental Chemical Engineering, 2017, 5, 6098.
50 Wang L, Peng L, Xie L, et al. Environmental Science & Technology, 2017, 51, 7055.
51 Ferrarese E, Andreottola G, Oprea I A. Journal of Hazardous Materials, 2008, 152(1), 128.
52 Hollman J, Dominic J A, Achari G. Chemosphere, 2020, 248, 125911.
53 Wang S, Wang H, Liu Y, et al. Separation and Purification Technology, 2020, 233, 115973.
54 Ghanbari F, Moradi M. Chemical Engineering Journal, 2017, 310, 41.
55 Qi F, Chu W, Xu B. Chemical Engineering Journal, 2014, 235, 10.
56 Rezaei R, Mohseni M. Chemical Engineering Journal, 2017, 310, 457.
[1] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed