Application Progress of Peroxybond Compounds in Remediation of PAHs Pollution in Soil and Groundwater
HAN Yueming1, DAI Chaomeng1,*, DUAN Yanping2, LIU Shuguang1, ZHANG Yalei3
1 College of Civil Engineering, Tongji University, Shanghai 200092, China 2 School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China 3 School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Abstract: The remediation and treatment of soil and groundwater contaminated by polycyclic aromatic hydrocarbons (PAHs) is an urgent task that remains to be accomplished. The advanced oxidation technology based on peroxobond compounds has attracted constant attention because of its high efficiency in degrading PAHs in soil and groundwater. This study reviews the research on the application of hydrogen peroxide, persulfate and peracetic acid in remediating PAHs-contaminated soil and groundwater. We discuss the activation and degradation mechanisms from the perspective of free radicals generated by peroxybond breakage, explore the application prospect of peracetic acid in remediating PAHs-polluted soil and groundwater, and analyze the main external factors affecting the remediation efficiency. It is found that the types of free radicals produced vary based on different activation methods, so does their effect on PAHs pollution remediation. Moreover, the remediation effect is affected greatly by the complex environments of soil and groundwater. Therefore, in future research, new activation materials should be developed to improve the remediation effect and reduce secondary pollution. In addition, appropriate activation methods should be chosen based on the specific soil and groundwater environments, and surfactants should be used to expand the remediation range of oxidants. For that, more in-depth studies should be carried out on the remediation of PAHs pollution by peracetic acid. The remediation of PAHs-contaminated soil and groundwater by peroxybond compounds is a fruitful ground for continuing studies and a technology with broad and bright application prospect. This review provides a theoretical basis for such studies.
韩跃鸣, 代朝猛, 段艳平, 刘曙光, 张亚雷. 含过氧键化合物在土壤及地下水PAHs污染修复中的应用进展[J]. 材料导报, 2024, 38(6): 22080204-7.
HAN Yueming, DAI Chaomeng, DUAN Yanping, LIU Shuguang, ZHANG Yalei. Application Progress of Peroxybond Compounds in Remediation of PAHs Pollution in Soil and Groundwater. Materials Reports, 2024, 38(6): 22080204-7.
1 Liu Y, Zhou N. Journal of Tongji University (Natural Science), 2018(7), 934 (in Chinese). 刘颖, 周念清. 同济大学学报(自然科学版), 2018(7), 934. 2 Meng X. Study on pollution characteristics of polycyclic aromatic hydrocarbons at a typical iron and steel site in the North. Ph. D. Thesis, China University of Geoscience (Beijing), China, 2020 (in Chinese). 孟祥帅. 我国北方某典型钢铁企业场地多环芳烃(PAHs)污染特征研究. 博士学位论文, 中国地质大学(北京), 2020. 3 Zhang Y, Li S, Zhang H, et al. Acta Agriculturae Zhejiangensis, 2018(10), 1748 (in Chinese). 张杨, 李森, 张宏玲, 等. 浙江农业学报, 2018(10), 1748. 4 Wang J, Wang S. Chemical Engineering Journal, 2018, 334, 1502. 5 Liang C, Huang C, Chen Y. Water Research, 2008, 42(15), 4091. 6 Flotron V, Delteil C, Padellec Y, et al. Chemosphere, 2005, 59(10), 1427. 7 Pan Y. Fenton-like reaction for remediation of polycyclic aromatic hydrocarbon contaminated soil and mechanism of calcium peroxide based fenton-like reactions. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese). 潘玥. 类芬顿技术处理多环芳烃污染土壤及过氧化钙体系的反应机理研究. 博士学位论文, 上海交通大学, 2019. 8 Zhai D, Li D. China Water & Wastewater, 2020(11), 87 (in Chinese). 翟俊, 李达彦. 中国给水排水, 2020(11), 87. 9 Wang T, Qu G, Li J, et al. Vacuum, 2014, 101, 86. 10 Yang S, Wang P, Yang X, et al. Journal of Hazardous Materials, 2010, 179(1-3), 552. 11 Miao D. Microwave-activated persulfate to remediate ethyl-parathion/polycyclic aromatic hydrocarbons from contaminated soil. Master's Thesis, Northwest A&F University, China, 2021 (in Chinese). 苗铎. 微波活化过硫酸盐降解土壤中乙基对硫磷/多环芳烃性能及机理. 硕士学位论文, 西北农林科技大学, 2021. 12 Lominchar M, Santos A, de Miguel E, et al. The Science of the Total Environment, 2018, 622-623(1), 41. 13 An Y. Treatment of soil PAHs by persulfate activated by iron-carbon composites. Master's Thesis, Dalian University of Technology, China, 2021 (in Chinese). 安宇. 铁碳复合物活化过硫酸盐处理土壤多环芳烃. 硕士学位论文, 大连理工大学, 2021. 14 Xu C, Pan W, Feng P, et al. Chemosphere, 2022, 306, 135525. 15 Duan X, Sun H, Kang J, et al. ACS Catalysis, 2015, 5(8), 4629. 16 Hung C, Huang C, Lam S, et al. Journal of Environmental Chemical Engineering, 2020(5), 104440. 17 Alderman A. Journal of Hazardous Materials, 2007(3), 652. 18 Haber F, Weiss J. The Royal Society, 1934, 861(147), 332. 19 Mousset E, Oturan N, van Hullebusch E D, et al. Applied Catalysis B: Environmental, 2014, 160-161(1), 666. 20 Mousset E, Frunzo L, Esposito G, et al. Applied Catalysis B: Environmental, 2016, 180, 189. 21 Lou J, Lu N, Li J, et al. Chemical Engineering Journal, 2012, 180, 99. 22 Wang T, Qu G, Sun Q, et al. Separation and Purification Technology, 2015, 147, 17. 23 Wang H, Guo H, Zhao W, et al. High Voltage Engineering, 2015(10), 3512 (in Chinese). 王慧娟, 郭贺, 赵文信, 等. 高电压技术, 2015(10), 3512. 24 Martínez-Huitle C A, Brillas E. Applied Catalysis B: Environmental, 2009, 87(3-4), 105. 25 Wen D, Guo X, Li Q, et al. Journal of Hazardous Materials, 2022, 423, 127199. 26 Wu C, Zhao W, Wang H, et al. High Voltage Engineering, 2015(1), 257 (in Chinese). 吴春笃, 赵文信, 王慧娟, 等. 高电压技术, 2015(1), 257. 27 Xu Y. Research on the effect of degradation of polycyclic aromatic hydrocarbon pollution in soil by advanced oxidation technology of sulfate free radicals. Master's Thesis, Nanjing Agricultural University, China, 2019 (in Chinese). 徐源洲. 硫酸根自由基高级氧化技术降解土壤多环芳烃污染的效果研究. 硕士学位论文, 南京农业大学, 2019. 28 Peluffo M, Mora V C, Morelli I S, et al. Geoderma, 2018, 317, 8. 29 Suslick K, Flannigan D. Annual Review of Physical Chemistry, 2008, 59(1), 659. 30 Wei Z, Villamena F A, Weavers L K. Environmental Science & Technology, 2017, 51(6), 3410. 31 Rodriguez S, Vasquez L, Costa D, et al. Chemosphere, 2014, 101, 86. 32 Zhang X, Francis R, Dutton D, et al. Journal of Wood Chemistry and Technology, 1998, 18(3), 253. 33 Cuervo L, Kozlov Y, Süss-Fink G, et al. Journal of Molecular Catalysis A: Chemical, 2004, 218(2), 171. 34 Cai M, Sun P, Zhang L, et al. Environmental Science and Technology, 2017, 51(24), 14217. 35 Kim J, Du P, Liu W, et al. Environmental Science & Technology, 2020, 54(8), 5268. 36 Kim J, Zhang T, Liu W, et al. Environmental Science and Technology, 2019, 53(22), 13312. 37 Zhou F, Lu C, Yao Y, et al. Chemical Engineering Journal, 2015, 281, 953. 38 Venny W, Gan S, Ng H K. Science of the Total Environment, 2012, 419, 240. 39 Jonsson S, Persson Y, Frankki S, et al. Journal of Hazardous Materials, 2007, 149(1), 86. 40 Lundstedt S, Persson Y, Öberg L. Chemosphere, 2006, 65(8), 1288. 41 Watts R J, Stanton P C, Howsawkeng J, et al. Water Research, 2002, 36(17), 4283. 42 Ren Y, Lin L, Ma J, et al. Applied Catalysis B: Environmental, 2015, 165, 572. 43 Sun J, Song M, Feng J, et al. Environmental Science and Pollution Research, 2012, 19(5), 1536. 44 Wu W, Tian D, Liu T, et al. Chemical Engineering Journal, 2020, 394, 124938. 45 Bogan B W, Trbovic V. Journal of Hazardous Materials, 2003, 100(1-3), 285. 46 Wang T, Lu K, Li J, et al. Environmental Science & Technology, 2010, 44(8), 3105. 47 Gan S, Yap C L, Ng H K, et al. Journal of Hazardous Materials, 2013, 262, 691. 48 Bouzid I, Maire J, Ahmed S I, et al. Chemosphere, 2018, 210, 977. 49 Bouzid I, Maire J, Brunol E, et al. Journal of Environmental Chemical Engineering, 2017, 5, 6098. 50 Wang L, Peng L, Xie L, et al. Environmental Science & Technology, 2017, 51, 7055. 51 Ferrarese E, Andreottola G, Oprea I A. Journal of Hazardous Materials, 2008, 152(1), 128. 52 Hollman J, Dominic J A, Achari G. Chemosphere, 2020, 248, 125911. 53 Wang S, Wang H, Liu Y, et al. Separation and Purification Technology, 2020, 233, 115973. 54 Ghanbari F, Moradi M. Chemical Engineering Journal, 2017, 310, 41. 55 Qi F, Chu W, Xu B. Chemical Engineering Journal, 2014, 235, 10. 56 Rezaei R, Mohseni M. Chemical Engineering Journal, 2017, 310, 457.