Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22080238-13    https://doi.org/10.11896/cldb.22080238
  无机非金属及其复合材料 |
热电器件界面性能的研究现状
长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共*, 张勤勇
西华大学材料科学与工程学院,成都 610036
Research Status of Interface Properties of Thermoelectric Devices
CHANG Jungang, CHEN Yu, HE Jing, LIANG Qiyin, LEI Xiaobo, CAI Fanggong*, ZHANG Qinyong
School of Materials Science and Engineering, Xihua University, Chengdu 610036, China
下载:  全 文 ( PDF ) ( 20297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,基于塞贝克效应的热电技术不断取得进展,热电器件已在多个领域得以运用。然而热电器件的各连接界面存在诸多挑战。尤其是热电材料与电极的界面处在实际运用中面临电阻、热阻高,接头处易老化失效等问题。这使得热电器件的转化效率远低于理论值,可靠性不足以支持其工业化运用,热电材料的器件化进程严重滞后于新型热电材料的开发进度。为此,本文重点归纳总结了热电器件中热电材料与电极连接界面的电传输、热传输、连接性能的评估指标及相关理论,并详细介绍了各指标的测定方法和一些常见的优化策略,以期扩展热电器件的界面研究,提升热电器件的综合性能,扩大热电器件的应用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
长俊钢
陈玉
何静
梁奇银
雷晓波
蔡芳共
张勤勇
关键词:  热电器件  接触电阻  界面热阻  电极  连接  测量    
Abstract: In recent years, the thermoelectric technology based on Seebeck effect has made continuous progress, and thermoelectric devices have been applied in many fields. However, there are many challenges in the interface of thermoelectric devices. In particular, the interface between thermoelectric materials and electrodes is faced with problems such as high electrical and thermal resistance, and easy aging failure at the joint in practical application. This makes the conversion efficiency of thermoelectric devices much lower than the theoretical value, and the reliability is not enough to support industrial application. The device application of thermoelectric materials lags behind the development of new thermoelectric materials. To this end, this paper mainly summarizes the evaluation indexes and related theories of electric transmission, heat transmission and connection performance of the interface between the thermoelectric materials and the electrode in the thermoelectric devices, and introduces the measurement methods of each index and some common optimization strategies in detail. In this way, the interface research of thermoelectric devices can be expanded. This will help to improve the comprehensive performance of thermoelectric devices, and thus make them more widely used.
Key words:  thermoelectric device    contact resistance    interfacial thermal resistance    electrode    connection    measurement
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TN37  
基金资助: 大学生创新创业训练计划-国家级创新训练项目(202210623030);西华大学“西华杯”大学生创新创业项目-登峰计划(XHB2022065)
通讯作者:  *蔡芳共,西华大学材料科学与工程学院副教授、硕士研究生导师。2008年西南交通大学材料科学与工程专业本科毕业,2013年西南交通大学材料学专业博士毕业后到西部超导材料科技股份有限公司从事博士后研究,2016年11月至今任教于西华大学。目前主要从事热电材料与器件、光伏材料及电池等相关研究,发表论文50余篇,包括Chemistry of Materials、Materials Today Physics等。   
作者简介:  长俊钢,2017年6月于西南石油大学获得工学学士学位。现为西华大学材料与化工专业硕士研究生,在蔡芳共教授的指导下进行研究。目前主要研究领域为新能源材料。
引用本文:    
长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
CHANG Jungang, CHEN Yu, HE Jing, LIANG Qiyin, LEI Xiaobo, CAI Fanggong, ZHANG Qinyong. Research Status of Interface Properties of Thermoelectric Devices. Materials Reports, 2024, 38(6): 22080238-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080238  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22080238
1 Liu W S, Bai S Q. Journal of Materiomics, 2019, 5(3), 321.
2 Zhao J W, Xu W, Kuang Z F, et al. Energy Conversion and Management, 2021, 247, 114754.
3 Ren Z F, Lan Y C, Zhang Q Y, et al. Advanced thermoelectrics: materials, contacts, devices, and systems, CRC Press, US, 2017, pp. 617.
4 Beltrán-Pitarch B, Maassen J, García-Cañadas J. Applied Energy, 2021, 299, 117287.
5 Berger H H. Journal of the Electrochemical Society, 1972, 119(4), 507.
6 He Y P, Léonard F, Spataru C D. Physical Review Materials, 2018, 2(6), 065401.
7 Wais M, Held K, Battiato M. Physical Review Materials, 2018, 2, 045402.
8 Vikhor L M, Anatychuk L I, Gorskyi P V. Journal of Applied Physics, 2019, 126(16), 164503.
9 Liu W S, Jie Q, Kim H S, et al. Acta Materialia, 2015, 87, 357.
10 Padovani F A, Stratton R. Solid-State Electronics, 1966, 9(7), 695.
11 Okumura H, Martin D, Grandjean D. Applied Physics Letters, 2016, 109(25), 252101.
12 Li H, Cheng M, Wang P, et al. Advanced Materials, 2022, 34(18), 2200885.
13 Song S, Liang Z, Xu C, et al. Soft Science, 2022, 2(3), 13.
14 Liu W S, Wang H Z, Wang L J, et al. Journal of Materials Chemistry A, 2013, 1(42), 13093.
15 Feng H B, Zhang L X, Zhang J L, et al. Materials, 2020, 13(5), 1130.
16 Trivedi V, Battabyal M, Murty B S, et al. Ceramics International, 2022, 48(19), 29175.
17 Yu C C, Wu H J, Agne M T, et al. APL Materials, 2019, 7(1), 013001.
18 Yin L, Chen C, Zhang F, et al. Acta Materialia, 2020, 198, 25.
19 Thimont Y, Lognoné Q, Goupil C, et al. Journal of Electronic Materials, 2014, 43(6), 2023.
20 Singh A, Bhattacharya S, Thinaharan C, et al. Journal of Physics D: Applied Physics, 2009, 42(1), 015502.
21 Feng S P, Chang Y H, Yang J, et al. Physical Chemistry Chemical Phy-sics, 2013, 15(18), 6757.
22 Li J Q, Zhao S Y, Chen J L, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18562.
23 Shen J J, Wang Z Y, Chu J, et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14182.
24 Kim Y, Jin Y, Yoon G, et al. Journal of Materials Science & Technology, 2019, 35(5), 711.
25 Jourdon J, Lhostis S, Moreau S, et al. IEEE Transactions on Electron Devices, 2019, 66(6), 2699.
26 Loh W M, Swirhun S E, Crabbe E, et al. IEEE Electron Device Letters, 1985, 6(9), 441.
27 Marlow G S, Das M B. Solid-State Electronics, 1982, 25(2), 91.
28 Yang C X, Sun L Z, Brandt R E, et al. Journal of Applied Physics, 2017, 122(4), 045303.
29 Wang C H, Hsieh H C, Sun Z W, et al. ACS Applied Materials & Interfaces, 2020, 12(24), 27001.
30 Mengali O J, Seiler M R. Advanced Energy Conversion, 1962, 2, 59.
31 Ebling D, Bartholomé K, Bartel M, et al. Journal of Electronic Mate-rials, 2010, 39, 1376.
32 Ziolkowski P, Karpinski G, Dasgupta T, et al. Physica Status Solidi (A), 2013, 210, 89.
33 Thimont Y, Lognoné Q, Goupil C, et al. Journal of Electronic Materials, 2014, 43(6), 2023.
34 Kim Y, Yoon G, Park H S. Experimental Mechanics, 2016, 56(5), 861.
35 Kim Y, Song J, Yoon G, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(15), 14112.
36 de Boor J, Gloanec C, Kolb H, et al. Journal of Alloys and Compounds, 2015, 632, 348.
37 Gupta R P, McCarty R, Sharp J. Journal of Electronic Materials, 2014, 43(6), 1608.
38 Hu X K, Liu X X, Guo Z T, et al. Review of Scientific Instruments, 2021, 92(2), 025110.
39 Swartz E T, Pohl R O. Reviews of Modern Physics, 1989, 61(3), 605.
40 Jin Z H. Physica Status Solidi (B), 2021, 258, 2000443.
41 Pei Q X, Guo J Y, Suwardi A, et al. Materials Today Physics, 2023, 30, 100953.
42 Cai Y H, Li P, Zhai P C, et al. Journal of Wuhan University of Techno-logy, 2009, 31(23), 27(in Chinese).
蔡永华, 李鹏, 翟鹏程, 等. 武汉理工大学学报, 2009, 31(23), 27.
43 Little W A. Canadian Journal of Physics, 1950, 37(3), 334.
44 Matsumoto D S, Reynolds C L, Anderson A C. Physical Review B, 1977, 16(8), 3303.
45 Costescu R M, Wall M A, Cahill D G. Physical Review B, 2003, 67(5), 054302.
46 Freedman J P, Yu X, Davis R F, et al. Physical Review B, 2016, 93(3), 035309.
47 Majumdar A. Journal of Heat Transfer, 1993, 115(1), 7.
48 Loh G C, Tay B K, Teo E H T. Applied Physics Letters, 2010, 97, 121917.
49 Khvesyuk V I, Liu B, Barinov A A. Journal of Physics: Conference Series, 2019, 1382, 012155.
50 Subramanyan H, Kim K, Lu T, et al. AIP Advances, 2019, 9(11), 115116.
51 Zhang Y Y, Ma D K, Zang Y, et al. Frontiers in Energy Research, 2018, 6, 48.
52 Saiz F, Karaaslan Y, Rurali R, et al. Journal of Applied Physics, 2021, 129(15), 155105.
53 Grochola G, Russo S P, Snook I K. The Journal of Chemical Physics, 2005, 123(20), 204719.
54 Phelan P E. Journal of Heat Transfer, 1998, 120, 37.
55 Liu D H, Luo Y, Shang X C. International Journal of Heat and Mass Transfer, 2015, 80, 407.
56 Wang Z, Yang J, Wang S, et al. Rare Metal Materials and Engineering, 2013, 42(8), 1572.
57 Sponagle B, Groulx D. Applied Thermal Engineering, 2016, 96, 671.
58 Zhang G, Liu C H, Fan S S. ACS Nano, 2012, 6(4), 3057.
59 Pan X S, Cui X Y, Liu S S, et al. Journal of Low Temperature Physics, 2020, 201, 213.
60 Chen J, Xu X F, Zhou J, et al. Reviews of Modern Physics, 2022, 94(2), 025002.
61 Ohsone Y, Wu G, Dryden J, et al. Journal of Heat Transfer, 1999, 121(4), 954.
62 Fieberg C, Kneer R. International Journal of Heat and Mass Transfer, 2008, 51(5), 1017.
63 Zhang P, Xuan Y M, Li Q. Experimental Thermal and Fluid Science, 2014, 54, 204.
64 Xian Y Q, Zhang P, Zhai S P, et al. Applied Thermal Engineering, 2018, 130, 1530.
65 Borca-Tasciuc T, Kumar A R, Chen G. Review of Scientific Instruments, 2001, 72(4), 2139.
66 Luo H Z, Chen Y X, Sun P F, et al. IEEE Transactions on Power Electronics, 2016, 31(7), 5112.
67 Gao S, Ngo K D T, Lu G Q. IEEE Transactions on Industrial Electronics, 2021, 68(5), 4448.
68 Kim D H, Kim C, Kim J T, et al. Measurement, 2018, 129, 281.
69 Ren X, Gou J, Dai Y, et al. International Communications in Heat and Mass Transfer, 2022, 136, 106182.
70 Cui J L, Zhao X B, Zhao W M, et al. Materials Science and Enginee-ring: B, 2002, 94, 223.
71 Zhang A B, Wang B L. International Journal of Thermal Sciences, 2016, 104, 396.
72 Kim Y, Yoon G, Cho B J, et al. Applied Sciences, 2017, 7, 1116.
73 Ziabari A, Suhir E, Shakouri A. Microelectronics Journal, 2014, 45(5), 547.
74 Bao X, Hou S H, Wu Z X, et al. Journal of Materials Science & Techno-logy, 2023, 148, 64.
75 Zhu Y K, Wu P , Guo J, et al. Ceramics International, 2020, 46(10), 14994.
76 Zhang C, Geng X J, Chen B, et al. Small, 2021, 17(42), 2104067.
77 Suwardi A, Lim S H, Zheng Y, et al. Journal of Materials Chemistry C, 2020, 8(47), 16940.
78 Radhakrishnan R. Materials and Manufacturing Processes, 2008, 23(6), 626.
79 Dolzhnikov D S, Zhang H, Jang J, et al. Acta Materialia, 2015, 347(6220), 425.
80 Malik S A, Hung L T, Nong N V. Materials Today Energy, 2017, 5, 305.
81 Wang X, Wang H C, Su W B, et al. Renewable Energy, 2019, 131, 606.
82 El-Genk M S, Saber H H, Caillat T, et al. Energy Conversion and Ma-nagement, 2006, 47(2), 174.
83 Chen L Q, Mei D Q, Wang Y C, et al. Journal of Alloys and Compounds, 2019, 796, 314.
84 Romano L, Comamala J V. Materials Science in Semiconductor Proces-sing, 2019, 92, 1.
85 Kim Y, Lee H S, Yoon G, et al. ACS Applied Energy Materials, 2020, 3(3), 2989.
86 Wang Z Y, Fu C G, Xia K Y, et al. ACS Applied Materials & Interfaces, 2021, 13(6), 7317.
87 Nozariasbmarz A, Saparamadu U, Li W, et al. Journal of Power Sources, 2021, 493, 229695.
88 Zhang B, Zheng T, Wang Q X, et al. Scripta Materialia, 2018, 152, 36.
89 Chen S P, Wang Y C, Wang Y N, et al. Journal of Alloys and Compounds, 2022, 905, 164267.
90 Pham N H, Farahi N, Kamila H, et al. Materials Today Energy, 2019, 11, 97.
91 Orr B, Akbarzadeh A, Mochizuki M, et al. Applied Thermal Enginee-ring, 2016, 101, 490.
92 Motiei P, Yaghoubi M, GoshtashbiRad E, et al. Renewable Energy, 2018, 119, 551.
93 Barako M T, Park W, Marconnet A M, et al. Journal of Electronic Materials, 2013, 42(3), 372.
94 Merienne R, Lynn J, McSweeney E, et al. Applied Energy, 2019, 237, 671.
95 Xuan X C, Ng K C, Yap C, et al. International Journal of Heat and Mass Transfer, 2002, 45(26), 5159.
96 Wang P, Li J E, Wang B L, et al. Journal of Power Sources, 2019, 437, 226861
97 Wang P, Wang B L. International Journal of Engineering Science, 2017, 119, 93.
98 Wu S C, Zhang S Q, Xu Z W. International Journal of Fatigue, 2016, 87, 359.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[3] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[4] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[5] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[6] 左彤, 唐显, 李鑫, 何虎, 牛厂磊, 隋解和, 郭逢凯. 方钴矿热电器件性能衰减影响因素研究[J]. 材料导报, 2024, 38(21): 23050211-8.
[7] 吴菁, 李佳, 黄金华, 宋伟杰, 谭瑞琴. 聚合物分散液晶器件概述、发展趋势及应用研究进展[J]. 材料导报, 2024, 38(21): 23010078-8.
[8] 魏彦平, 魏凤春, 朱青松, 刘琦, 郭子涵. 金属-聚合物表面微纳形态的构筑与研究[J]. 材料导报, 2024, 38(19): 23090143-9.
[9] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[10] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[11] 赵敏, 郭洪飞, 侯小虎, 邬佳芳. SiO2中间层反应连接LaCrO3陶瓷的机理及界面应力模拟研究[J]. 材料导报, 2024, 38(17): 23120208-8.
[12] 焦金隆, 杨正海, 史雪飞, 宋英健, 李文勃, 孙乐民. 接触面积对H62/T2弹性接触载流摩擦副性能的影响[J]. 材料导报, 2024, 38(16): 23030298-5.
[13] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[14] 杨瑞锋, 贾波, 郭敏, 武晨航, 李金岳, 郝小军, 冯庆. Ti基Ru-Ir-Ti电极在稀氯化钠溶液中的电解失效行为[J]. 材料导报, 2024, 38(13): 22110104-5.
[15] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed