Abstract: Interface bonding strength has always been one of the important factors limiting the development of metal-polymer heterogeneous components. Building micro-nano structures on the metal surface will help improve the physical and chemical properties of the interface and increase the bonding strength of the metal-polymer interface. Taking the metal surface treatment process as an entry point, this paper reviews the heterogeneous interfacial bonding mechanism and the influence of different surface treatment processes on the interfacial bonding effect. First, three mechanisms for generating forces between metals with surface micro-nano morphology and polymers are presented. Secondly, the more commonly used surface treatment processes and the effects of different surface treatment processes on micro-nano structure morphology and interface bonding characteristics are discussed. Finally, the existing methods for preparing micro-nano structures on metal surfaces are summarized and analyzed, and new prospects are proposed for surface treatment issues in metal-polymer heterogeneous components. This paper systematically elaborates on the relationship between metal surface structure and heterogeneous component properties, providing a theoretical basis for the construction and research progress of new metal-polymer surface micro-nano morphology.
1 Guo X N, Zhang Y, Xiong Z, et al. Journal of Constructional Steel Research, 2016, 127, 1. 2 Bodjona K, Lessard L. Journal of Reinforced Plastics and Composites, 2016, 35(9), 764. 3 Ochoa-Putman C, Vaidya U K. Composites Part A: Applied Science and Manufacturing, 2011, 42(8), 906. 4 Falck R, Amancio-Filho S T. Metals, 2023, 13(1), 34. 5 Liu D L, Feng Z, Li H C, et al. Polymer Engineering and Science, 2021, 61(1), 95. 6 Zhang N, Byrne C J, Browne D J, et al. Materials Today, 2012, 15(5), 216. 7 Fabrin P A, Hoikkanen M E, Vuorinen J. Polymer Engineering & Science, 2007, 47(8), 1187. 8 Gong N N, Wang B W, Wang Y H, et al. Journal of Manufacturing Processes, 2020, 49, 365. 9 Alyousef J, Yudhanto A, Tao R, et al. Composite Structures, 2022, 296, 115881. 10 Encinas N, Oakley B R, Belcher M A, et al. International Journal of Adhesion and Adhesives, 2014, 50, 157. 11 Xu J, Fang X, Xiao P, et al. World Nonferrous Metals, 2022(5), 25 (in Chinese). 徐俊, 方啸, 肖鹏, 等. 世界有色金属, 2022(5), 25. 12 Kajihara Y, Tamura Y, Kimura F, et al. CIRP Annals-Manufacturing Technology, 2018, 67(1), 591. 13 Martinez-Landeros V H, Vargas-Islas S Y, Cruz-Gonzalez C E, et al. Journal of Manufacturing Processes, 2019, 39, 160. 14 Ramaswamy K, O'higgins R M, Kadiyala A K, et al. Composites Part B: Engineering, 2020, 185, 107765. 15 Anvar B R, Akbarzadeh A. The Journal of Adhesion, 2017, 93(7), 550. 16 Gong N N, Wang B W, Wang Y H, et al. Journal of Manufacturing Processes, 2020, 49, 365. 17 Friedrich J, Mix R, Wettmarshausen S. Journal of Adhesion Science and Technology, 2008, 22(10-11), 1123. 18 Li J J, Liu Z Q, Zhang R Z, et al. Materials & Design, 2021, 204, 109641. 19 Zudov A I. Russian Physics Journal, 2013, 55(12), 1386. 20 Wang Y, Gu Z P, Xin Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 2018, 538, 500. 21 Kong D J, Wang J C, Liu H. Rare Metal Materials and Engineering, 2016, 45(5), 1122. 22 Schneider B, Hennemann O D, Possart W. The Journal of Adhesion, 2002, 78(9), 779. 23 Wang H, Wang H W. Applied Surface Science, 2005, 249(1-4), 151. 24 Zaraska L, Bobruk M, Jaskuła M, et al. Applied Surface Science, 2015, 351, 1034. 25 Yuan C A, Sluis O V D, Zhang G Q, et al. Microelectronics Reliability, 2007, 47(9-11), 1483. 26 Buehler M J. Atomistic modeling of materials failure, Springer-Verlag, US, 2008, pp. 185. 27 Wen Y, Li S L, Huang J, et al. Journal of Adhesion Science and Technology, 2023, 37(3), 452. 28 Grujicic M, Sellappan V, Omar M A, et al. Journal of Materials Processing Technology, 2008, 197(1-3), 363. 29 Oweis Y, Alageel O, Kozak P, et al. Dental Materials, 2017, 33(11), e393. 30 Li X Y, Gao H J. National Science Review, 2015, 2(2), 133. 31 Zhou M Y, Fu L, Jiang F Z, et al. Polymers, 2020, 12(8), 1696. 32 Li X P, Gong N N, Yang C, et al. Journal of Materials Processing Technology, 2018, 255, 635. 33 Wang Z B, Ji H J, Chen W, et al. Polymer Materials Science and Engineering, 2021, 37(1), 223 (in Chinese). 王赵彬, 纪华剑, 陈葳, 等. 高分子材料科学与工程, 2021, 37(1), 223. 34 Abrahami S T, De Kok J M M, Terryn H, et al. Frontiers of Chemical Science and Engineering, 2017, 11(3), 465. 35 Chen J, Du K P, Chen X M, et al. Applied Surface Science, 2019, 489, 392. 36 Van Dam J P B, Abrahami S T, Yilmaz A, et al. International Journal of Adhesion and Adhesives, 2020, 96, 102450. 37 Liu X, Li Y, Long L, et al. Nanotechnology Reviews, 2022, 11(1), 1927. 38 Kim W S, Kim K H, Jang C J, et al. Journal of Adhesion Science and Technology, 2013, 27(15), 1625. 39 Honkanen M, Hoikkanen M, Vippola M, et al. Journal of Adhesion Science and Technology, 2009, 23(13-14), 1747. 40 Hoikkanen M, Honkanen M, Vippola M, et al. Progress in Organic Coatings, 2011, 72(4), 716. 41 Lin W C, Li X P, Dong W P, et al. Journal of Materials Processing Technology, 2021, 296, 117180. 42 Honkanen M, Hoikkanen M, Vippola M, et al. Applied Surface Science, 2011, 257(22), 9335. 43 Lin W C. Study on Al-TPU integrated injection molding technology and interface bonding properties. Master's Thesis, Zhejiang Normal University, China, 2022 (in Chinese). 林微超. Al-TPU一体化注塑成型技术及界面结合性能研究. 硕士学位论文, 浙江师范大学, 2022. 44 Baburaj E G, Starikov D, Evans J, et al. International Journal of Adhesion and Adhesives, 2007, 27(4), 268. 45 Tan B, Hu Y S, Yuan B Y, et al. International Journal of Adhesion and Adhesives, 2021, 110, 102952. 46 Xu Y W, Li H G, Shen Y Z, et al. International Journal of Adhesion and Adhesives, 2016, 70, 74. 47 Hua L, Liu J H, Li S M, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(3), 302. 48 Fu Z L. Research on key technology of plastic-metal hybrid injection processing. Master's Thesis, Chongqing University, China, 2010 (in Chinese). 付忠亮. 塑料-金属复合注射成型的关键技术研究. 硕士学位论文, 重庆大学, 2010. 49 Lambiase F, Paoletti A. Thin-Walled Structures, 2018, 130, 254. 50 Lambiase F, Paoletti A, Grossi V, et al. Journal of Materials Processing Technology, 2017, 250, 379. 51 Gude M R, Prolongo S G, Ureña A. Surface and Coatings Technology, 2012, 207, 602. 52 Wagner K C, Byrd G D. Journal of the Medical Library Association. 2004, 92(1), 14. 53 Kadleckova M, Minarik A, Smolka P, et al. Materials, 2018, 12(1), 109. 54 Zhang J S, Zhao X H, Zuo Y, et al. Surface and Coatings Technology, 2008, 202(14), 3149. 55 He P G, Chen K, Yu B, et al. Composites Science and Technology, 2013, 82, 15. 56 Xie Y, Zhang J H, Zhou T. Applied Surface Science, 2019, 492, 558. 57 Wen Y, Li S L, Huang J, et al. Journal of Adhesion Science and Technology, 2022, 37(3), 452. 58 Hine P J, Muddarris S E, Packha D E. The Journal of Adhesion, 1984, 17(3), 207. 59 Wang T T, Vazirani H N. The Journal of Adhesion, 2006, 4(4), 353. 60 Vasconcelos R L, Oliveira G H M, Amancio-Filho S T, et al. Polymer Engineering and Science, 2023, 63(3), 691. 61 Gent A N, Lin C W. The Journal of Adhesion, 1990, 32(2-3), 113. 62 Egoshi T, Taira Y, Soeno K, et al. Dental Materials Journal, 2013, 32(2), 219. 63 Rudawska A, Danczak I, Müller M, et al. International Journal of Adhesion and Adhesives, 2016, 70, 176. 64 Bahbou M F, Nylén P, Wigren J. Journal of Thermal Spray Technology, 2004, 13(4), 508. 65 Shokrian M D, Shelesh-Nezhad K, Najjar R. International Journal of Adhesion and Adhesives, 2019, 89, 139. 66 Wu Y H, Zhao W J, Wang W R, et al. Surface Technology, 2017, 46(5), 133 (in Chinese). 吴英豪, 赵文杰, 王武荣, 等. 表面技术, 2017, 46(5), 133. 67 Hu Y S, Yuan B Y, Cheng F, et al. Composites Part B, Engineering, 2019, 178, 107478. 68 Qian B T, Shen Z Q. Langmuir, the ACS Journal of Surfaces and Colloids, 2005, 21(20), 9007. 69 Esmaeilirad A, Rukosuyev M V, Jun M B G, et al. Surface and Coatings Technology, 2016, 285, 227. 70 Wang Y H, Wang W, Zhong L, et al. Applied Surface Science, 2010, 256(12), 3837. 71 Yang W X, Yuan Y, L G Y, et al. Materials Letters, 2018, 226, 4. 72 Szesz E M, Pereira B L, Kuromoto N K, et al. Thin Solid Films, 2013, 528, 163. 73 Du K P, Huang J, Li C, et al. Journal of Thermoplastic Composite Materials, 2022, 35(11), 1852. 74 Kadoya S, Kimura F, Kajihara Y. Polymer Testing, 2019, 75, 127. 75 Zou P Y, Zhang H, Lei M, et al. Rare Metal Materials and Engineering, 2021, 50(5), 1853 (in Chinese). 邹鹏远, 张华, 雷敏, 等. 稀有金属材料与工程, 2021, 50(5), 1853. 76 Kleffel T, Drummer D. Composites Part B, Engineering, 2017, 117, 20. 77 Kong D, Ren W, Qi L, et al. Materials Science and Engineering, A, 2022, 840, 142982. 78 Yin S Y, Xie Y, Li R L, et al. Industrial & Engineering Chemistry Research, 2020, 59(27), 12409. 79 Huang H J, Sun M X, Wei X W, et al. Surface and Coatings Technology, 2021, 428, 127896. 80 Chen J. Study on GFRPP/aluminum alloy micro-nano pressing integration technology. Master's Thesis, Chongqing University of Technology, China, 2019 (in Chinese). 陈静. GFRPP/铝合金微纳调控及一体化成型技术研究. 硕士学位论文, 重庆理工大学, 2019. 81 Li X P, Xu D H, Gong N N, et al. Materials & Design, 2019, 179, 107875. 82 Masuda H, Fukuda K. Science, 1995, 268(5216), 1466. 83 Kikuchi T, Yamashita M, Iwai M, et al. Journal of the Electrochemical Society, 2021, 168(9), 093501. 84 Matsumoto M, Hashimoto H, Asoh H. Journal of the Electrochemical Society, 2020, 167(4), 041504.