Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23090143-9    https://doi.org/10.11896/cldb.23090143
  高分子与聚合物基复合材料 |
金属-聚合物表面微纳形态的构筑与研究
魏彦平, 魏凤春*, 朱青松, 刘琦, 郭子涵
河南工业大学材料科学与工程学院,郑州 450001
Construction and Study of Micro-Nano Structure on Metal-Polymer Surfaces
WEI Yanping, WEI Fengchun*, ZHU Qingsong, LIU Qi, GUO Zihan
School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 19580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 界面结合强度一直是限制金属-聚合物异质构件发展的重要因素之一。在金属表面构筑微纳结构有利于改善界面物理、化学性能,提高金属-聚合物界面的结合强度。本文以金属表面处理工艺为切入点,综述了异质界面结合机理以及不同的表面处理工艺对界面结合效果的影响。首先,介绍了具有表面微纳形态的金属与聚合物之间产生作用力的三种机理。其次,讨论了较为常用的表面处理工艺以及不同表面处理工艺对微纳结构形态与界面结合特性的影响。最后,总结和分析了现有金属表面微纳结构的制备方法,对金属-聚合物异质构件中的表面处理问题提出了新的展望。本文对金属表面结构和异质构件性能之间的关系进行了系统的阐述,可为新型金属-聚合物表面微纳形态的构筑与研究进展提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏彦平
魏凤春
朱青松
刘琦
郭子涵
关键词:  异质构件连接  表面处理  微纳米结构  界面结合  机械互锁结构  表面结构    
Abstract: Interface bonding strength has always been one of the important factors limiting the development of metal-polymer heterogeneous components. Building micro-nano structures on the metal surface will help improve the physical and chemical properties of the interface and increase the bonding strength of the metal-polymer interface. Taking the metal surface treatment process as an entry point, this paper reviews the heterogeneous interfacial bonding mechanism and the influence of different surface treatment processes on the interfacial bonding effect. First, three mechanisms for generating forces between metals with surface micro-nano morphology and polymers are presented. Secondly, the more commonly used surface treatment processes and the effects of different surface treatment processes on micro-nano structure morphology and interface bonding characteristics are discussed. Finally, the existing methods for preparing micro-nano structures on metal surfaces are summarized and analyzed, and new prospects are proposed for surface treatment issues in metal-polymer heterogeneous components. This paper systematically elaborates on the relationship between metal surface structure and heterogeneous component properties, providing a theoretical basis for the construction and research progress of new metal-polymer surface micro-nano morphology.
Key words:  heterostructure connection    surface treatment    micro-nano structure    interfacial bonding    mechanical interlocking structure    surface topography
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TB33  
基金资助: 河南省科技研发计划联合基金(222103810045);国家自然科学基金(52003075)
通讯作者:  *魏凤春,通信作者,河南工业大学材料科学与工程学院副教授、硕士研究生导师。1999年6月郑州大学机械设计及制造专业本科毕业,2003—2009年于郑州大学材料学专业攻读硕士和博士学位。2009年6月博士毕业后到河南工业大学材料学院工作至今,目前主要从事树脂基复合材料结构设计、纤维增强复合材料、异质材料连接等方面的研究工作。fengchun_wei@haut.edu.cn   
作者简介:  魏彦平,2022年7月于许昌学院获得工学学士学位。现为河南工业大学材料科学与工程学院硕士研究生,在魏凤春副教授的指导下进行研究。目前主要研究领域为纤维增强复合材料、异质材料连接等方面。
引用本文:    
魏彦平, 魏凤春, 朱青松, 刘琦, 郭子涵. 金属-聚合物表面微纳形态的构筑与研究[J]. 材料导报, 2024, 38(19): 23090143-9.
WEI Yanping, WEI Fengchun, ZHU Qingsong, LIU Qi, GUO Zihan. Construction and Study of Micro-Nano Structure on Metal-Polymer Surfaces. Materials Reports, 2024, 38(19): 23090143-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090143  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23090143
1 Guo X N, Zhang Y, Xiong Z, et al. Journal of Constructional Steel Research, 2016, 127, 1.
2 Bodjona K, Lessard L. Journal of Reinforced Plastics and Composites, 2016, 35(9), 764.
3 Ochoa-Putman C, Vaidya U K. Composites Part A: Applied Science and Manufacturing, 2011, 42(8), 906.
4 Falck R, Amancio-Filho S T. Metals, 2023, 13(1), 34.
5 Liu D L, Feng Z, Li H C, et al. Polymer Engineering and Science, 2021, 61(1), 95.
6 Zhang N, Byrne C J, Browne D J, et al. Materials Today, 2012, 15(5), 216.
7 Fabrin P A, Hoikkanen M E, Vuorinen J. Polymer Engineering & Science, 2007, 47(8), 1187.
8 Gong N N, Wang B W, Wang Y H, et al. Journal of Manufacturing Processes, 2020, 49, 365.
9 Alyousef J, Yudhanto A, Tao R, et al. Composite Structures, 2022, 296, 115881.
10 Encinas N, Oakley B R, Belcher M A, et al. International Journal of Adhesion and Adhesives, 2014, 50, 157.
11 Xu J, Fang X, Xiao P, et al. World Nonferrous Metals, 2022(5), 25 (in Chinese).
徐俊, 方啸, 肖鹏, 等. 世界有色金属, 2022(5), 25.
12 Kajihara Y, Tamura Y, Kimura F, et al. CIRP Annals-Manufacturing Technology, 2018, 67(1), 591.
13 Martinez-Landeros V H, Vargas-Islas S Y, Cruz-Gonzalez C E, et al. Journal of Manufacturing Processes, 2019, 39, 160.
14 Ramaswamy K, O'higgins R M, Kadiyala A K, et al. Composites Part B: Engineering, 2020, 185, 107765.
15 Anvar B R, Akbarzadeh A. The Journal of Adhesion, 2017, 93(7), 550.
16 Gong N N, Wang B W, Wang Y H, et al. Journal of Manufacturing Processes, 2020, 49, 365.
17 Friedrich J, Mix R, Wettmarshausen S. Journal of Adhesion Science and Technology, 2008, 22(10-11), 1123.
18 Li J J, Liu Z Q, Zhang R Z, et al. Materials & Design, 2021, 204, 109641.
19 Zudov A I. Russian Physics Journal, 2013, 55(12), 1386.
20 Wang Y, Gu Z P, Xin Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 2018, 538, 500.
21 Kong D J, Wang J C, Liu H. Rare Metal Materials and Engineering, 2016, 45(5), 1122.
22 Schneider B, Hennemann O D, Possart W. The Journal of Adhesion, 2002, 78(9), 779.
23 Wang H, Wang H W. Applied Surface Science, 2005, 249(1-4), 151.
24 Zaraska L, Bobruk M, Jaskuła M, et al. Applied Surface Science, 2015, 351, 1034.
25 Yuan C A, Sluis O V D, Zhang G Q, et al. Microelectronics Reliability, 2007, 47(9-11), 1483.
26 Buehler M J. Atomistic modeling of materials failure, Springer-Verlag, US, 2008, pp. 185.
27 Wen Y, Li S L, Huang J, et al. Journal of Adhesion Science and Technology, 2023, 37(3), 452.
28 Grujicic M, Sellappan V, Omar M A, et al. Journal of Materials Processing Technology, 2008, 197(1-3), 363.
29 Oweis Y, Alageel O, Kozak P, et al. Dental Materials, 2017, 33(11), e393.
30 Li X Y, Gao H J. National Science Review, 2015, 2(2), 133.
31 Zhou M Y, Fu L, Jiang F Z, et al. Polymers, 2020, 12(8), 1696.
32 Li X P, Gong N N, Yang C, et al. Journal of Materials Processing Technology, 2018, 255, 635.
33 Wang Z B, Ji H J, Chen W, et al. Polymer Materials Science and Engineering, 2021, 37(1), 223 (in Chinese).
王赵彬, 纪华剑, 陈葳, 等. 高分子材料科学与工程, 2021, 37(1), 223.
34 Abrahami S T, De Kok J M M, Terryn H, et al. Frontiers of Chemical Science and Engineering, 2017, 11(3), 465.
35 Chen J, Du K P, Chen X M, et al. Applied Surface Science, 2019, 489, 392.
36 Van Dam J P B, Abrahami S T, Yilmaz A, et al. International Journal of Adhesion and Adhesives, 2020, 96, 102450.
37 Liu X, Li Y, Long L, et al. Nanotechnology Reviews, 2022, 11(1), 1927.
38 Kim W S, Kim K H, Jang C J, et al. Journal of Adhesion Science and Technology, 2013, 27(15), 1625.
39 Honkanen M, Hoikkanen M, Vippola M, et al. Journal of Adhesion Science and Technology, 2009, 23(13-14), 1747.
40 Hoikkanen M, Honkanen M, Vippola M, et al. Progress in Organic Coatings, 2011, 72(4), 716.
41 Lin W C, Li X P, Dong W P, et al. Journal of Materials Processing Technology, 2021, 296, 117180.
42 Honkanen M, Hoikkanen M, Vippola M, et al. Applied Surface Science, 2011, 257(22), 9335.
43 Lin W C. Study on Al-TPU integrated injection molding technology and interface bonding properties. Master's Thesis, Zhejiang Normal University, China, 2022 (in Chinese).
林微超. Al-TPU一体化注塑成型技术及界面结合性能研究. 硕士学位论文, 浙江师范大学, 2022.
44 Baburaj E G, Starikov D, Evans J, et al. International Journal of Adhesion and Adhesives, 2007, 27(4), 268.
45 Tan B, Hu Y S, Yuan B Y, et al. International Journal of Adhesion and Adhesives, 2021, 110, 102952.
46 Xu Y W, Li H G, Shen Y Z, et al. International Journal of Adhesion and Adhesives, 2016, 70, 74.
47 Hua L, Liu J H, Li S M, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(3), 302.
48 Fu Z L. Research on key technology of plastic-metal hybrid injection processing. Master's Thesis, Chongqing University, China, 2010 (in Chinese).
付忠亮. 塑料-金属复合注射成型的关键技术研究. 硕士学位论文, 重庆大学, 2010.
49 Lambiase F, Paoletti A. Thin-Walled Structures, 2018, 130, 254.
50 Lambiase F, Paoletti A, Grossi V, et al. Journal of Materials Processing Technology, 2017, 250, 379.
51 Gude M R, Prolongo S G, Ureña A. Surface and Coatings Technology, 2012, 207, 602.
52 Wagner K C, Byrd G D. Journal of the Medical Library Association. 2004, 92(1), 14.
53 Kadleckova M, Minarik A, Smolka P, et al. Materials, 2018, 12(1), 109.
54 Zhang J S, Zhao X H, Zuo Y, et al. Surface and Coatings Technology, 2008, 202(14), 3149.
55 He P G, Chen K, Yu B, et al. Composites Science and Technology, 2013, 82, 15.
56 Xie Y, Zhang J H, Zhou T. Applied Surface Science, 2019, 492, 558.
57 Wen Y, Li S L, Huang J, et al. Journal of Adhesion Science and Technology, 2022, 37(3), 452.
58 Hine P J, Muddarris S E, Packha D E. The Journal of Adhesion, 1984, 17(3), 207.
59 Wang T T, Vazirani H N. The Journal of Adhesion, 2006, 4(4), 353.
60 Vasconcelos R L, Oliveira G H M, Amancio-Filho S T, et al. Polymer Engineering and Science, 2023, 63(3), 691.
61 Gent A N, Lin C W. The Journal of Adhesion, 1990, 32(2-3), 113.
62 Egoshi T, Taira Y, Soeno K, et al. Dental Materials Journal, 2013, 32(2), 219.
63 Rudawska A, Danczak I, Müller M, et al. International Journal of Adhesion and Adhesives, 2016, 70, 176.
64 Bahbou M F, Nylén P, Wigren J. Journal of Thermal Spray Technology, 2004, 13(4), 508.
65 Shokrian M D, Shelesh-Nezhad K, Najjar R. International Journal of Adhesion and Adhesives, 2019, 89, 139.
66 Wu Y H, Zhao W J, Wang W R, et al. Surface Technology, 2017, 46(5), 133 (in Chinese).
吴英豪, 赵文杰, 王武荣, 等. 表面技术, 2017, 46(5), 133.
67 Hu Y S, Yuan B Y, Cheng F, et al. Composites Part B, Engineering, 2019, 178, 107478.
68 Qian B T, Shen Z Q. Langmuir, the ACS Journal of Surfaces and Colloids, 2005, 21(20), 9007.
69 Esmaeilirad A, Rukosuyev M V, Jun M B G, et al. Surface and Coatings Technology, 2016, 285, 227.
70 Wang Y H, Wang W, Zhong L, et al. Applied Surface Science, 2010, 256(12), 3837.
71 Yang W X, Yuan Y, L G Y, et al. Materials Letters, 2018, 226, 4.
72 Szesz E M, Pereira B L, Kuromoto N K, et al. Thin Solid Films, 2013, 528, 163.
73 Du K P, Huang J, Li C, et al. Journal of Thermoplastic Composite Materials, 2022, 35(11), 1852.
74 Kadoya S, Kimura F, Kajihara Y. Polymer Testing, 2019, 75, 127.
75 Zou P Y, Zhang H, Lei M, et al. Rare Metal Materials and Engineering, 2021, 50(5), 1853 (in Chinese).
邹鹏远, 张华, 雷敏, 等. 稀有金属材料与工程, 2021, 50(5), 1853.
76 Kleffel T, Drummer D. Composites Part B, Engineering, 2017, 117, 20.
77 Kong D, Ren W, Qi L, et al. Materials Science and Engineering, A, 2022, 840, 142982.
78 Yin S Y, Xie Y, Li R L, et al. Industrial & Engineering Chemistry Research, 2020, 59(27), 12409.
79 Huang H J, Sun M X, Wei X W, et al. Surface and Coatings Technology, 2021, 428, 127896.
80 Chen J. Study on GFRPP/aluminum alloy micro-nano pressing integration technology. Master's Thesis, Chongqing University of Technology, China, 2019 (in Chinese).
陈静. GFRPP/铝合金微纳调控及一体化成型技术研究. 硕士学位论文, 重庆理工大学, 2019.
81 Li X P, Xu D H, Gong N N, et al. Materials & Design, 2019, 179, 107875.
82 Masuda H, Fukuda K. Science, 1995, 268(5216), 1466.
83 Kikuchi T, Yamashita M, Iwai M, et al. Journal of the Electrochemical Society, 2021, 168(9), 093501.
84 Matsumoto M, Hashimoto H, Asoh H. Journal of the Electrochemical Society, 2020, 167(4), 041504.
[1] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[2] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[3] 张春来, 张丽霞, 王潇, 吴银涛, 王波. 沟槽型微纳复合结构表面的制备与减阻性能研究[J]. 材料导报, 2023, 37(12): 22020186-5.
[4] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[5] 王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
[6] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[7] 张健, 李鑫, 徐琦, 胡永乐, 毛聪, 张明军. 钎焊金刚石工具失效机理及其抑制策略研究进展[J]. 材料导报, 2022, 36(15): 20120220-7.
[8] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[9] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[10] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[11] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[12] 杨俊茹, 李淑磊, 汤美红, 李贺, 张悦刊. 石墨烯掺杂对WC(0001)-Co硬质合金晶相界面结合性能的影响[J]. 材料导报, 2020, 34(18): 18109-18113.
[13] 彭和, Chen Daolun, 蒋显全, 白雪飞. 金属材料超声波点焊研究进展[J]. 材料导报, 2020, 34(11): 11064-11070.
[14] 王冰. 铁素体不锈钢表面的拉丝缺陷[J]. 材料导报, 2019, 33(Z2): 460-462.
[15] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed