Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22030280-6    https://doi.org/10.11896/cldb.22030280
  宇航材料 |
聚酰亚胺薄膜表面导电金属层化学沉积技术研究
王楠1,*, 白晶莹1,2, 李家峰1, 冯立1, 徐俊杰1, 赫艳龙1, 董俊伟1, 崔庆新1, 张立功1
1 中国空间技术研究院,北京卫星制造厂有限公司,北京 100094
2 北京星驰恒动科技发展有限公司,北京 100090
Study on Chemical Deposition Technology of Conductive Metal Layer on Polyimide Film Surface
WANG Nan1,*, BAI Jingying1,2, LI Jiafeng1, FENG Li1, XU Junjie1, HE Yanlong1, DONG Junwei1, CUI Qingxin1, ZHANG Ligong1
1 Beijing Spacecrafts, China Academy of Space Technology, Beijing 100094, China
2 Xingchi Hengdong Technology Development Co., Ltd., Beijing 100090, China
下载:  全 文 ( PDF ) ( 5548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为赋予聚酰亚胺(Polyimide,PI)薄膜材料表面良好的导电性,满足其在雷达天线等航空、航天领域的应用,采用化学碱蚀法对表面具有极高化学惰性的PI薄膜进行界面微纳改性处理,并结合化学镀铜沉积技术,实现了PI薄膜表面导电金属层的制备。利用SEM、XRD、AFM、FTIR等对聚酰亚胺薄膜表面改性前后的微观结构和表面金属层性能进行表征。常温化学碱蚀后的PI薄膜表面呈现出树枝状与铆钉状微观结构交错均匀分布的凸起结构形貌,60 ℃碱蚀后的PI薄膜表面呈现出微小凹坑特征,且碱蚀后PI薄膜表面亲水性明显增强。PI薄膜表面金属镀层均匀致密,导电性良好,且镀层与PI薄膜基材之间具有良好的结合力。碱蚀改性后PI薄膜表面呈现出相互交错的微观凸起亲水性结构,为PI薄膜表面金属层的成核、结晶提供良好的沉积与互嵌结合点,形成PI薄膜表面金属层与基材之间良好的界面互锁,从而有利于提高表面镀层结合强度。本工作实现了化学碱蚀作用下聚酰亚胺薄膜表面高导电、高结合强度金属层的制备,可为聚酰亚胺薄膜在雷达天线等航空、航天领域的应用提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王楠
白晶莹
李家峰
冯立
徐俊杰
赫艳龙
董俊伟
崔庆新
张立功
关键词:  碱蚀改性  聚酰亚胺  界面结合作用机制  结合力  表面金属化    
Abstract: In order to make the polyimide (PI) film material have good surface conductivity and meet its application in aerospace fields, like radar antenna, the highly chemically inert PI material on the surface was modified by alkaline etching, and the metal layers on the surface of PI film were then deposited by electroless copper plating technology. The microstructure of the PI film before and after surface modification, as well as properties of surface metal layer on PI film was characterized by SEM, XRD, AFM, FTIR and so on. After alkaline etching at room temperature, there is a staggered and evenly distributed protrusion morphology with dendritic and rivet structures on the surface of PI. However, the PI film surface etched at 60 ℃ presents pits with different sizes and depths of etching holes, and the hydrophilicity of the PI film surface is enhanced after etc-hing. The metal layers on the surface of PI film behave uniform and dense, with good conductivity and good adhesion with PI film substrate. The staggered protrusion structure on the surface of PI film after modification provides a good deposition and intercalation junction point for the nucleation and crystallization of the metal layer on the surface of PI film, forming a superior interface interlock between the metal layers and the PI substrate, so as to benefit the metal layer with high bonding force on the surface of PI film. This work realizes the preparation of metal layer with high conductivity and superior bonding force on the PI surface under alkaline etching, and can provide technical support for the application of polyimide in aerospace fields.
Key words:  alkaline solution etching modification    polyimide    interface bonding mechanism    binding force    surface metallization
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB332  
通讯作者:  * wnan1215@163.com   
作者简介:  王楠,中国空间技术研究院北京卫星制造厂有限公司工程师。2015年和2018年在北京化工大学分别获得工学学士学位和硕士学位。主要从事金属材料、复合材料表面处理技术研究,发表论文10余篇,包括CarbonRSC Advances、《表面技术》《宇航材料工艺》等。
引用本文:    
王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
WANG Nan, BAI Jingying, LI Jiafeng, FENG Li, XU Junjie, HE Yanlong, DONG Junwei, CUI Qingxin, ZHANG Ligong. Study on Chemical Deposition Technology of Conductive Metal Layer on Polyimide Film Surface. Materials Reports, 2022, 36(22): 22030280-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030280  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22030280
1 Zhang J Y, Ni H J, Gong M, et al.Acta Materiae Compositae Sinica, 2021, 38(10), 3247(in Chinese).
张嘉阳, 倪洪江, 龚明, 等.复合材料学报, 2021, 38(10), 3247.
2 Li J F, Wang N, Bai J Y, et al.Surface Technology, 2022, 51(3), 9(in Chinese).
李家峰, 王楠, 白晶莹, 等. 表面技术, 2022, 51(3), 9.
3 Liu J H, Zhan Z, Zhen F, et al.Sensors and Actuators B: Chemical, 2020, 308,127694.
4 Sun B, Zhang Z L, Xu J, et al.Journal of Materials Science & Technology, 2022, 102, 264.
5 Xu C, Qiu X Y, Guo Y, et al. Surface Technology, 2021, 50(6), 169(in Chinese).
徐灿, 邱心宇, 郭云, 等. 表面技术, 2021, 50(6), 169.
6 Zhang L H, Tang G C, Cui K F.Electroplating & Finishing Electroplat Finish, 2020, 39(21), 1477(in Chinese).
张立红, 唐光超, 崔开放. 电镀与涂饰, 2020, 39(21), 1477.
7 Lu J, Zou G X, Zhuang Y B. Insulating Materials, 2021, 54(11), 34(in Chinese).
陆健, 邹国享, 庄永兵. 绝缘材料, 2021, 54(11), 34.
8 Huang P, Que Z B, Jiang Y, et al. Materials Reports A: Review Papers, 2009, 23(7), 107(in Chinese).
黄培, 阙正波, 蒋英, 等. 材料导报:综述篇, 2009, 23(7), 107.
9 Chen Q, Zhang X H, Zhou C, et al. Electroplating & Finishing Electroplat Finish, 2018, 37(23), 1080(in Chinese).
陈琴, 张兴华, 周超, 等.电镀与涂饰, 2018, 37(23), 1080.
10 Mu H F, Liu K, Li Z H, et al. Electroplating & Finishing Electroplat Finish, 2016, 35(24), 1286(in Chinese).
慕慧峰, 刘凯, 李中华, 等.电镀与涂饰, 2016, 35(24), 1286.
11 Cui G, Qi S, Wang X, et a1. Journal of Physical Chemical B, 2012, 116(40), 12349.
12 Wang Y, Li N, Wang X, et a1. RSC Advances, 2016, 6(9), 7582.
13 Zhan L Z, Wu L J, Tian G Z, et a1. Journal of Functional Polymers, 2020, 33(5), 467(in Chinese).
詹淋中, 吴力佳, 田桂芝, 等. 功能高分子学报,2020,33(5),467.
14 Lee W J, Kim Y B. Thin Solid Films, 2008, 517(3), 1191.
15 Bag A, Choi S H. Materials Characterization, 2017, 129, 186.
16 Chen J J, An Q, Rodriguez R D, et a1. Applied Surface Science, 2019, 487, 503.
17 Lin J H, Chen Y M, Wang S X, et al. Electroplating & Finishing Electroplat Finish, 2018, 40(1), 1(in Chinese).
林建辉, 陈苑明, 王守绪, 等.电镀与精饰, 2018, 40(1), 1.
18 Wang D X. Preparation of polyimide/silver composite film based on in-situ chemical plating. Master's Thesis, Harbin University of Science and Technology, China, 2017(in Chinese).
王德鑫. 基于原位化学镀制备PI/Ag复合薄膜. 硕士学位论文, 哈尔滨理工大学, 2017.
19 Jin Y, Zeng G F, Zhu D Y, et al. Chinese Journal of Applied Chemistry, 2011, 28(3), 257(in Chinese).
金盈, 曾广赋, 朱丹阳,等. 应用化学, 2011, 28(3), 257.
[1] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[2] 雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
[3] 杨传超, 徐鸿杰, 田国峰, 张静静, 高鸿, 卓航, 张梦颖, 战佳宇, 武德珍. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 22040361-5.
[4] 朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 黄锦涛, 闵永刚. 光敏聚酰亚胺:低温固化设计策略[J]. 材料导报, 2022, 36(19): 21030016-9.
[5] 邓凯文, 牛荣军, 孙小波, 郭军力, 邓四二. 石墨烯改性多孔聚酰亚胺轴承保持架材料性能研究[J]. 材料导报, 2022, 36(17): 21030176-5.
[6] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[7] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[8] 王芮晗, 赵若虹, 邹宛晏, 王敏, 周博, 齐胜利, 刘刚, 武德珍. 耐原子氧聚酰亚胺材料的研究进展[J]. 材料导报, 2021, 35(11): 11187-11195.
[9] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[10] 陈营, 魏燕红, 陈德平, 慕东. 中温成型含硅可溶性聚酰亚胺薄膜及其性能研究[J]. 材料导报, 2020, 34(Z1): 572-575.
[11] 刘仁臣, 陆静. KrF激光刻蚀制备300 nm自支撑聚酰亚胺膜[J]. 材料导报, 2019, 33(Z2): 580-583.
[12] 陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
[13] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[14] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[15] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed