Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22040282-4    https://doi.org/10.11896/cldb.22040282
  宇航材料 |
聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究
雷尧飞*, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳
北京卫星制造厂有限公司,北京 100094
Research on Preparation and Property of Polyimide Aerogel and Its Thin Composite
LEI Yaofei*, SHEN Yuxin, AI Sufen, DONG Wei, CHEN Hao, ZHANG Pengfei, LIU Jia
Beijing Spacecrafts, Beijing 100094, China
下载:  全 文 ( PDF ) ( 3134KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航天器和尖端武器等领域对热导率低且柔性可弯曲的高性能隔热材料需求迫切。典型的二氧化硅基、氧化铝基和碳基等无机质气凝胶隔热材料因力学性能差、脆性大且不可弯曲等缺点无法满足狭窄空间及弯曲型面的隔热需求。相比无机气凝胶,聚酰亚胺(PI)气凝胶具有良好的力学性能和柔韧性能,同时具有低热导率特性,使其在柔性隔热材料方面具有广阔的应用前景。本工作采用溶胶-凝胶法,利用超临界干燥技术研制了聚酰亚胺气凝胶及其复合材料。研究表明:PI气凝胶的密度低至0.032 g/cm3,热稳定性能优异,热导率为0.025 8 W/(m·K);PI气凝胶薄型复合材料的热导率为0.023 0 W/(m·K),与无机气凝胶复合材料隔热性能相当,并表现出良好的柔性特点。本研究还首次报道了薄型柔性PI气凝胶复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷尧飞
沈宇新
艾素芬
董薇
陈浩
张鹏飞
刘佳
关键词:  聚酰亚胺气凝胶  隔热材料  复合材料    
Abstract: Thermal insulation materials with low thermal conductivity and flexibility are urgently needed in spacecraft and advanced weapons. Because of bad mechanical property, high brittleness and inflexibility, typical silica-based, alumina-based and carbon-based inorganic aerogel thermal insulation materials cannot meet thermal insulation requirements in narrow space and curved surface. Compared with inorganic aerogel, polyimide (PI) aerogel has excellent mechanical properties, flexibility and low thermal conductivity, which makes it have broad application prospect in the field of flexible thermal insulation. In this work, PI aerogel and their composites were prepared by sol-gel method and supercritical drying techno-logy. The research shows that the density of PI aerogel is as low as 0.032 g/cm3, that thermal stability is good, and that thermal conductivity is 0.025 8 W/(m·K). The thermal conductivity of thin PI aerogel composites is 0.023 0 W/(m·K), which is comparable to the thermal insulation performance of inorganic aerogel composites. Moreover, the thin PI aerogel composites exhibit good flexibility. This study gives the first report on thin flexible PI aerogel composites.
Key words:  polyimide aerogel    thermal insulation material    composite
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB332  
通讯作者:  * leiyf0818@126.com   
作者简介:  雷尧飞,北京卫星制造厂有限公司高级工程师。2017年毕业于北京化工大学,获材料科学与工程专业博士学位,同年加入北京卫星制造厂有限公司工作至今,主要从事航天领域高性能功能材料开发和工程应用研究,工作期间在《宇航材料工艺》《深空探测学报》等中文核心期刊发表文章5篇。
引用本文:    
雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
LEI Yaofei, SHEN Yuxin, AI Sufen, DONG Wei, CHEN Hao, ZHANG Pengfei, LIU Jia. Research on Preparation and Property of Polyimide Aerogel and Its Thin Composite. Materials Reports, 2022, 36(22): 22040282-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040282  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22040282
1 Li C D, Chen Z F,Dong W F, et al. Journal of Non-Crystalline Solids, 2021, 553, 120517.
2 Lei Y F, Han M L, AI S F, et al. Aerospace Materials & Technology, 2019, 49(6), 86(in Chinese).
雷尧飞,韩妙玲,艾素芬,等. 宇航材料工艺, 2019, 49(6), 86.
3 Randall J P, Meador M A B, Jana S C. ACS Applied Materials & Interfaces, 2011, 3, 613.
4 Jones S M. Journal of Sol-Gel Science and Technology, 2006, 40, 351.
5 Yun S, Luo H, Gao Y. RSC Advances, 2014, 4, 4535.
6 Mohammed A H, Rashmi S A, Carmel M E, et al. Journal of Institution of Engineering(India):Series D, 2017, 98(2), 297.
7 Feng J, Feng J Z, Jiang Y G. Aerospace Materials & Technology, 2012, 42(2), 42.
8 Fan W, Zhang X, Zhang Y, et al. Composites Science and Technology, 2019,173, 47.
9 Ma J J, Zhan M S, Wang K, et al. Aerospace Materials & Technology, 2013, 14(1), 15.
10 Cao X, Huang M X, Ding H, et al. Manned Spaceflight, 2018, 24 (1), 26.
11 Guo H Q, Meador A B, Mccorkle L, et al. ACS Applied Materials & Interfaces, 2012, 4(10), 5422.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[8] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[13] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[14] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[15] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed