Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20070243-12    https://doi.org/10.11896/cldb.20070243
  高分子与聚合物基复合材料 |
电刺激响应形状记忆聚合物复合材料的设计和驱动性能
李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳
临沂大学材料科学与工程学院,山东 临沂 276000
Design and Driving Properties of Electrically Stimulated Shape Memory Polymer Composites
LI Xingjian, HOU Qing, YANG Jilong, FAN Yufei, CUI Qiuyue, XU Shoufang
School of Materials Science and Engineering, Linyi University, Linyi 276000,Shandong, China
下载:  全 文 ( PDF ) ( 7803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与常见的液晶弹性体、介电弹性体和水凝胶等具有单一的膨胀、收缩和弯曲变化的形状可编程软材料相比,形状记忆高分子能够被灵活编程得到多样化的几何形状,且形状变化过程具有高度复杂性,成为智能可编程软材料研究领域的热点。形状记忆高分子是指能够感知外界环境变化的刺激(如温度、光、电、磁、pH、离子和水等)并响应这种变化,对其自身状态参数(如形状、位置、应变和应力等)进行调整,从而回复到预先设定状态的一类高分子材料。形状记忆高分子因具有可回复形变量大、响应温度便于调节、刺激响应方式丰富、材料属性多样化(热固性、热塑性、热适性和水凝胶)、形状记忆效应种类多(双形、多形、双向可逆、温度记忆和应力记忆)、赋形容易和可降解等特点,在生物医学、智能纺织品、航空航天、柔性电子等领域都展示出极为广阔的应用前景。
其中热驱动形状记忆聚合物是目前研究最深入、应用最广泛的一类形状记忆高分子。但是热驱动方法需要对材料直接进行加热以实现形状记忆效应,限制了其在生物医学、航空航天和柔性电子等不能采用直接加热而实现驱动的体内环境或外空间环境领域的应用。为此,具有远程控制驱动的光、电和磁响应特性的形状记忆聚合物得到广泛发展,大大拓宽了形状记忆聚合物在屏蔽环境和非接触环境中的应用范围。然而,对于光响应性形状记忆聚合物,由于光线的穿透能力有限且不能辐照屏蔽的区域,其应用范围有限;对于磁响应形状记忆聚合物,目前具有磁场响应的材料种类非常少,而且需要专门产生磁场的装置,其应用和研究受到一定的限制。
目前由于导电材料、随处可用的电源、人工肌肉、柔性电子、软体机器人和传感器等新兴领域中电刺激响应材料的广泛应用,使得电刺激响应形状记忆聚合物深受研究者关注。本文详细综述了电刺激响应形状记忆聚合物复合材料的设计制备方法、类型、导电性能、电驱动形状记忆性能和应用,最后概述了电刺激响应形状记忆聚合物材料存在的问题并展望了其未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兴建
侯晴
杨继龙
范宇飞
崔秋月
徐守芳
关键词:  形状记忆聚合物  复合材料  电刺激响应  导电填料    
Abstract: Compared to deformable polymer materials with single expansion, contraction, and bending changes such as hydrogels, liquid crystal elastomers, and dielectric elastomers, shape memory polymers(SMPs) can be programed into a variety of complicated shapes, and its shape change is highly complex due to the capability to remember multiple shapes, which has become a hot spot in the field of intelligent materials. SMPs refer to a class of intelligent materials that sense changes in the external environment (such as temperature, light, electricity, magnetism, pH, ions, water, etc.), respond to such changes, adjust to its own state parameters (such as shape, position, strain, stress etc.) and return to a preset state. Due to large recoverable strain, diversified shape memory effects (one-way, two-way, triple, multiple, temperature-memory and stress-memory), various stimulus modes, multiple material attributes (such as thermoplastic SMPs, thermo-setting SMPs, thermadapt SMPs and shape memory hydrogels), easy shaping, easy adjustment of response temperature, and biodegradablity, SMPs have shown extremely broad application prospects in biomedicine, smart textiles, aerospace, soft robots and flexible electronics.
In a variety of SMPs, thermally stimulated SMPs are the most intensively studied and most widely used. However, the thermal driving method requires direct heating of the material to achieve the shape memory effect, which cannot be used to drive shape recovery in the internal or external space environment, limitting its applications in the biomedical, aerospace, and flexible electronics fields. For this reason, SMPs with optical, electrical, and magnetic response, which can be remotely controlled, have been widely developed, greatly expanding the application of SMPs in shielded environments and non-contact environments. However, due to the limited penetration of light and the inability to irradiate shielded areas, the application of light-responsive SMPs is limited; for magnetically responsive SMPs, with currently very few types of materials that have a magnetic field response and a required device that specifically generates a magnetic field, its application and research are subject to certain restrictions.
Electrically stimulated SMPs has attracted intense interest of researchers owing to wide application in the emerging fields of conductive mate-rials, power sources available everywhere, artificial muscles, flexible electronics, soft robots, and sensors.In this paper, the design and preparation methods, types, conductive properties, electrical-actuated shape memory properties and applications of electrically stimulated SMP compo-sites are reviewed in detail. Finally, the problems existing in electrically stimulated materials and their future development directions are summarized.
Key words:  shape memory polymer    composites    electrically stimulated response    conductive filler
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  O631.2  
基金资助: 国家自然科学基金资助项目(21777065);山东省自然科学基金(ZR2020QE092;ZR2020KE002);山东省高校青年创新项目(2019KJA021);2020年大学生创新创业训练计划项目(S202010452027)
通讯作者:  lixingjian1314@163.com   
作者简介:  李兴建,临沂大学,讲师。2016年博士毕业于中国科学院成都有机化学研究所,同年进入浙江大学从事博士后研究工作。于2018年任教于临沂大学材料科学与工程学院。以第一作者和通讯作者在国内外学术期刊发表论文40余篇。主要从事形状记忆高分子材料的研究。
引用本文:    
李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
LI Xingjian, HOU Qing, YANG Jilong, FAN Yufei, CUI Qiuyue, XU Shoufang. Design and Driving Properties of Electrically Stimulated Shape Memory Polymer Composites. Materials Reports, 2022, 36(6): 20070243-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070243  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20070243
1 Lendlein A, Kelch S. Angewandte Chemie International Edition, 2002, 41(12), 2034.
2 Zhao Q, Qi H J, Xie T. Progress in Polymer Science, 2015, 49-50, 79.
3 Xie T. Polymer, 2011, 52(22), 4985.
4 Leng J, Lan X, Liu Y, et al. Progress in Materials Science, 2011, 56(7), 1077.
5 Hu J, Zhu Y, Huang H, et al. Progress in Polymer Science, 2012, 37(12), 1720.
6 Du J, Yau X L, Liu Y L, et al. Acta Polymerica Sinica, 2016 (1), 14 (in Chinese).
杜江, 姚雪亮, 刘彦良, 等. 高分子学报, 2016 (1), 14.
7 Li X J, Wang Y R, Zheng Z H, et al. Progress in Chemistry, 2013, 25(10), 1726(in Chinese).
李兴建, 王亚茹, 郑朝晖, 等. 化学进展, 2013, 25(10), 1726.
8 Sun Y C, Chu M, Huang M, et al. Macromolecular Materials and Engineering, 2019, 304(10), 1900196.
9 Chen J, Zhang Z, Huang W, et al. Material Design, 2015, 69, 105.
10 Yang B, Huang W M, Li C, et al. European Polymer Journal, 2005, 41(5), 1123.
11 Sabzi M, Babaahmadi M, Samadi N, et al. Polymer International, 2017, 66(5), 665.
12 Du F, Ye E, Yang W, et al. Composites Part B-Engineering, 2015, 68, 170.
13 Li G, Fei G X, Wu L S, et al. Polymer Materials Science and Enginee-ring, 2011, 27(7), 147(in Chinese).
李果, 费国霞, 武丽莎, 等. 高分子材料科学与工程, 2011, 27(7), 147.
14 Zhang L, Jiao H, Jiu H, et al. Composites Part A-Applied Science and Manufacturing, 2016, 90, 286.
15 Leng J, Lan X, Liu Y, et al. Smart Materials and Structures, 2009, 18, 074003.
16 Guo F, Zheng X, Liang C, et al. ACS Nano, 2019, 13(5), 5549.
17 Zhou G, Zhang H, Xu S, et al. Scientific Reports, 2016, 6, 24148.
18 Liu X, Li H, Zeng Q, et al. Journal of Materials Chemistry A, 2015, 3(21), 11641.
19 Wang W, Liu D, Liu Y, et al. Composites Science and Technology, 2015, 106, 20.
20 Luo X, Mather P T. Soft Matter, 2010, 6(10), 2146.
21 Luo H, Li Z, Yi G, et al. Materials Letters, 2014, 137, 385.
22 Rodriguez J N, Zhu C, Duoss E B, et al. Scientific Reports, 2016, 6, 27933.
23 Garces I T, Ayranci C. Sensors and Actuators A-Physical, 2020, 301, 111717.
24 Wang X, Sparkman J, Gou J. Composites Science and Technology, 2017, 141, 8.
25 Koerner H, Price G, Pearce N A, et al. Nature Materials, 2004, 3(2), 115.
26 Cho J W, Kim J W, Jung Y C, et al. Macromolecular Rapid Communications, 2005, 26(5), 412.
27 Xiao Y, Zhou S, Wang L, et al. ACS Applied Materials & Interfaces, 2010, 2(12), 3506.
28 Yang S, He Y, Liu Y, et al. Journal of Materials Chemistry C, 2020, 8(1), 303.
29 Huang C, He M, Huo M, et al. Polymer Chemistry, 2013, 4(14), 3987.
30 Jung Y C, Yoo H J, Kim Y A, et al. Carbon, 2010, 48(5), 1598.
31 Mahapatra S S, Yadav S K, Yoo H J, et al. Sensors and Actuators B: Chemical, 2014, 193, 384.
32 Xiao W, Fan C, Li B, et al. Composites Communications, 2019, 14, 48.
33 Zhang Z, Wang W, Yang J, et al. Journal of Physical Chemistry C, 2016, 120(40), 22793.
34 Yang Z, Liu X, Shao Y, et al. Polymer Composites, 2019, 40(52), 1353.
35 Lu H, Gou U J. Polymers for Advanced Technologies, 2012, 23, 1529.
36 Sofla R L M, Rezaei M, Babaie A, et al. Composites Part B-Engineering, 2019, 175, 107090.
37 Zhang Z, Dou U J, He J, et al. Journal of Materials Chemistry C, 2017, 5(17), 4145.
38 Jiu H, Jiao H, Zhang L, et al. Journal of Materials Science: Materials in Electronics, 2016, 27, 10720.
39 Rana S, Cho J W, Tan L P. RSC Advances, 2013, 3(33), 13796.
40 Kim J T, Jeong H J, Park H C, et al. Reactive & Functional Polymers, 2015, 88, 1.
41 Wang E, Wu Y, Islam M Z, et al. Materials Letters, 2019, 238, 54.
42 Li C, Qiu L, Zhang B, et al. Advanced Materials, 2016, 28(7), 1510.
43 Kang S, Kang T, Kim B S, et al. Composites Part B-Engineering, 2019, 162, 580.
44 D'elia E, Ahmed H S, Feilden E, et al. Applied Materials Today, 2019, 15, 185.
45 Li F, Qi L, Yang J, et al. Journal of Applied Polymer Science, 2000, 75(1), 68.
46 Du J, Zhang Z, Liu D, et al. Composites Science and Technology, 2019, 169, 45.
47 Arun D I, Kumar K S S, Kumar B S, et al. Materials Science and Technology, 2019, 35(5), 596.
48 Leng J, Lan X, Li Y, et al. Smart Materials and Structures, 2009, 18, 074003.
49 Wang Y, Zhu G, Cui X, et al. Colloid and Polymer Science, 2014, 292(9), 2311.
50 Wang K, Zhu G, Yan X, et al. Chinese Journal of Polymer Science, 2016, 34(4), 466.
51 Qi X, Xiu H, Wei Y, et al. Composites Science and Technology, 2017, 139, 8.
52 Tang Z, Sun D, Yang D, et al. Composites Science and Technology, 2013, 75, 15.
53 Li X, Wang L, Zhang Z, et al. Macromolecular Chemistry and Physics, 2019, 220(17), 1900164.
54 Lin L, Zhou Q, Li M. Materials Letters, 2019, 256, 126574.
55 Gong X, Liu L, Liu Y, et al. Smart Materials and Structures, 2016, 25, 035036.
56 Lu H, Liu Y, Gou J, et al. Smart Materials and Structures, 2010, 19, 075021.
57 Lu H, Liang F, Gou J, et al. Journal of Applied Physics, 2014, 115(6), 064907.
58 Zhang F, Zhang Z, Liu Y, et al. Smart Materials and Structures, 2014, 23, 065020.
59 Yu Z, Zhang Q, Li L, et al. Advanced Materials, 2011, 23(5), 664.
60 Tang P, Zheng X, Yang H, et al. ACS Applied Materials & Interfaces, 2019, 11(51), 48202.
61 Zhou H, Luo H, Yao Y, et al. Materials Letters, 2019, 252, 76.
62 Wang P, Liu S, Chen S, et al. Materials Letters, 2018, 220, 297.
63 Zhou J, Li H, Tian R, et al. Scientific Reports, 2017, 7, 5535.
64 Leng J S, Lan X, Liu Y J, et al. Applied Physics Letters, 2008, 92, 014104.
65 Lu H, Lei M, Zhao C, et al. Smart Materials and Structures, 2015, 24, 045015.
66 Xie M, Wang L, Ge J, et al. ACS Applied Materials & Interfaces, 2015, 7(12), 6772.
67 Sattar R, Kausar A, Siddiq M. Chinese Journal of Polymer Science, 2015, 33, 1313.
68 Sahoo N G, Jung Y C, Goo N S, et al. Macromolecular Materials and Engineering, 2005, 290(11), 1049.
69 Sahoo N G, Jung Y C, Yoo H J, et al. Composites Science and Technology, 2007, 67(9), 1920.
70 Zhang F, Xia Y, Wang L, et al. ACS Applied Materials & Interfaces, 2018, 10(41), 35526.
71 Xu X, He Y, Liu H, et al. ACS Macro Letters, 2019, 8(4), 409.
72 Lu H, Yin J, Xu B, et al. Composites Part B-Engineering, 2016, 100, 146.
73 Lu H, Gou J, Leng J, et al. Applied Physics Letters, 2011, 98, 174105.
74 Lu H, Yin W, Huang W, et al. RSC Advances, 2013, 3(44), 21484.
75 Lu H, Liang F, Giu J. Soft Matter, 2011, 7(16), 7416.
76 Yu K, Zhang Z, Liu Y, et al. Applied Physics Letters, 2011, 98, 074102.
77 Lu H, Liang F, Gou J, et al. Smart Materials and Structures, 2014, 23, 085034.
78 Tang Z, Kang H, Wei Q, et al. Carbon, 2013, 64, 487.
79 Lu H, Gou J. Nanoscience and Nanotechnology Letters, 2012, 4(12), 1155.
80 Liu X, Li H, Zeng Q, et al. Journal of Materials Chemistry A, 2015, 3(21), 11641.
81 Leng J, Lu H, Liu Y, et al. Journal of Applied Physics, 2008, 104(10), 104917.
82 Lu H, Yu K, Liu Y, et al. Smart Materials and Structures, 2010, 19, 065014.
83 Lu H, LeiI M, Leng J. Journal of Applied Polymer Science, 2014, 131(15), 40506.
84 Lu H, Huang W, Leng J. Composites Part B-Engineering, 2014, 62, 1.
85 Xu Z, Ding C, Wei D, et al. ACS Applied Materials & Interfaces, 2019, 11(33), 30332.
86 Li X J, Bai B S, Liu S, et al. Materials Reports B:Research Papers, 2020, 34(1), 2142 (in Chinese).
李兴建, 白宝仕, 刘升, 等. 材料导报:研究篇, 2020, 34(2), 2142.
87 Wang Z, Zhao J, Chen M, et al. ACS Applied Materials & Interfaces, 2014, 6(22), 20051.
88 Gao Q C, Yan Y, Bi L H, et al. China Synthetic Rubber Industry, 2020, 43(3), 253 (in Chinese).
高庆超, 闫宇, 毕礼辉, 等. 合成橡胶工业, 2020, 43(3), 253.
[1] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[2] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[3] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[4] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[5] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[6] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[7] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[8] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[9] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[10] 熊小双, 张梓豪, 李巧敏, 余联庆. 考虑界面性能的短切亚麻纤维增强复合材料弹性常数预测[J]. 材料导报, 2022, 36(1): 21010018-8.
[11] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[12] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[13] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[14] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[15] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed