Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20120031-6    https://doi.org/10.11896/cldb.20120031
  无机非金属及其复合材料 |
钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究
李亮1, 栾贻恒1, 吴俊2, 杜修力1, 吴文杰1
1 北京工业大学城市与工程安全减灾教育部重点实验室,北京 100124
2 上海工程技术大学城市轨道交通学院,上海 201620
Test Study on Dynamic Tensile Behaviors of Steel Grid-Polyethylene Fiber Reinforced Engineered Cementitious Composites at Low and Medium Loading Rates
LI Liang1, LUAN Yiheng1, WU Jun2, DU Xiuli1, WU Wenjie1
1 Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
2 School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 5570KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作开展了钢网片-聚乙烯(PE)纤维增强水泥基复合材料的中低速动态拉伸性能试验研究,研究了其破坏状态、强度特性和能量吸收特性,并研究了纤维体积含量、钢网片层数和拉伸速率对其动态拉伸性能的影响。试验结果表明:PE纤维和钢网片的添加提高了水泥基复合材料的抗拉强度、变形能力与耗能能力。相对于基体材料,钢网片-PE纤维水泥基复合材料具有较为显著的增强和增韧效应。钢网片的主要作用是提高材料的抗拉强度,PE纤维的主要作用是提高材料的变形能力和耗能能力。纤维体积含量、钢网片层数和拉伸速率均对钢网片-PE纤维水泥基复合材料的动态拉伸性能有一定程度的影响。随着PE纤维体积含量的增加,材料的抗拉强度和耗能能力逐渐提高,当拉伸速率为1 mm/min时,纤维体积含量为0.5%的试件峰值应力比基体试件提高了约17%。随着钢网片层数的增加,材料的抗拉强度有较大幅度的提高,添加一层和两层钢网片的试件峰值应力比基体试件分别提高了约65%和192%;但此时材料的变形能力降低。随着拉伸速率的增大,材料的抗拉强度逐渐提高。在中等拉伸速率条件下,材料仍表现出明显的应变硬化性质,具有良好的韧性和耗能能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亮
栾贻恒
吴俊
杜修力
吴文杰
关键词:  水泥基复合材料  钢网片  聚乙烯纤维  动态拉伸性能  耗能能力    
Abstract: The dynamic tensile tests of the steel grid-polyethylene (PE) fiber reinforced engineered cementitious composites (ECC) were carried out at low and medium loading rates.The failure state and characteristic of tensile strength and energy dissipation of the steel grid-PE fiber reinforced ECC were investigated. The effects of fiber volume content, number of steel grid layers and tensile rate on the dynamic tensile behaviors of the steel grid-PE fiber reinforced ECC were also investigated. It is indicated by the test results that: the ultimate tensile strength, ductility and energy dissipation performance of the ECC are improved by the addition of steel grids and PE fibers. Compared to the matrix material, the steel grid-PE fiber reinforced ECC shows remarkable improvement phenomena of ultimate tensile strength and energy dissipation. The steel grid mostly enhances the ultimate tensile strength of the ECC, and the PE fiber mostly improves the ductility and energy dissipation performance of the ECC. The fiber volume content, number of steel grid layers and tensile rate all impact the dynamic tensile behaviors of the steel grid-PE fiber reinforced ECC to a certain extent. The ultimate tensile strength and energy dissipation performance of the reinforced ECC can be enhanced with the increase of fiber volume content. For the tensile rate of 1mm/min, an increase of about 17% is recorded for the peak stress of the reinforced ECC with a fiber volume content of 0.5% compared to the matrix material. The ultimate tensile strength of the reinforced ECC reveals remarkable enhancement with the increase of the number of steel grid layers. The peak stress of the reinforced ECC with one layer or two layers of steel grid increases by about 65% and 192% compared to the matrix material, respectively. But the deformation capability of the reinforced ECC shows deterioration with the increase of the number of steel grid layers. The ultimate tensile strength of the reinforced ECC can be enhanced with the increase of tensile rate. The reinforced ECC reveals obvious strain hardening behavior and has considerable ductility and energy dissipation performance at medium tensile rates.
Key words:  engineered cementitious composites    steel grid    polyethylene (PE) fiber    dynamic tensile behavior    energy dissipation
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU528.585  
基金资助: 国家自然科学基金面上项目(52078288);北京市自然科学基金项目(8212001)
通讯作者:  liliang@bjut.edu.cn   
作者简介:  李亮,北京工业大学教授,博士研究生导师,中国岩石力学与工程学会工程安全与防护分会理事。近年来主持国家自然科学基金面上项目1项,国家“十二五”科技支撑计划项目子课题1项,国家973计划项目子课题1项,北京市自然科学基金面上项目1项。已发表SCI和EI收录的学术期刊论文30余篇。获国家科技进步二等奖1项,天津市科技进步一等奖1项。主要研究方向为工程结构抗爆炸与冲击的理论与试验技术,岩土地震工程理论与数值计算方法。
引用本文:    
李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
LI Liang, LUAN Yiheng, WU Jun, DU Xiuli, WU Wenjie. Test Study on Dynamic Tensile Behaviors of Steel Grid-Polyethylene Fiber Reinforced Engineered Cementitious Composites at Low and Medium Loading Rates. Materials Reports, 2022, 36(5): 20120031-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120031  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20120031
1 Li V C.Journal of Advanced Concrete Technology, 2003, 1(3),215.
2 She Wei, Zhang Yunsheng, Sun Wei, et al. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Supp.1),2777(in Chinese).
佘伟, 张云升, 孙伟, 等.岩石力学与工程学报, 2011, 30(Supp.1),2777.
3 Tran T K, Kim D J.Cement and Concrete Research, 2013, 50,62.
4 Kim J S, Cho C G, Moon H J, et al. International Journal of Concrete Structures and Materials, 2017, 11(4),647.
5 Xu Shilang, Cai Xiangrong. Journal of Hydraulic Engineering, 2009, 40(9),1055(in Chinese).
徐世烺, 蔡向荣.水利学报, 2009, 40(9),1055.
6 Deng Zongcai, Xue Huiqing, Li Pengyuan, et al. Journal of Beijing University of Technology, 2009, 35(9),1204(in Chinese).
邓宗才, 薛会青, 李朋远, 等.北京工业大学学报, 2009, 35(9),1204.
7 Li Yan, Liu Zejun, Liang Xingwen.Engineering Mechanics, 2013, 30(1),322(in Chinese).
李艳, 刘泽军, 梁兴文.工程力学, 2013, 30(1),322.
8 Sun M, Chen Y Z, Zhu J Q, et al. Materials, 2019, 12(1),37.
9 Yang Huixian, Huang Yansheng, Li Jing.Engineering Mechanics, 2016, 33(7),144(in Chinese).
杨惠贤, 黄炎生, 李静. 工程力学, 2016, 33(7),144.
10 Zhang Shui, Li Guozhong, Chen Juan, et al. Acta Materiae Compositae Sinica, 2011, 28(3),109(in Chinese).
张水, 李国忠, 陈娟, 等.复合材料学报, 2011, 28(3),109.
11 Toutanji H A, Elkorchi T, Katz R N, et al. Cement and Concrete Research, 1993, 23(3),618.
12 Tan Guojin, Zhu Deqi, Wu Chunli, et al. Journal of Jilin University (Engineering and Technology Edition). https://doi.org/10.13229/j.cnki.jdxbgxb20190914(in Chinese).
谭国金, 朱德祺, 吴春利, 等.吉林大学学报(工学版). https://doi.org/10.13229/j.cnki.jdxbgxb20190914.
13 Zhang Yunhua, Yao Liping, Xu Shijin, et al. Acta Materiae Compositae Sinica, 2017, 34(5),1159(in Chinese).
张运华, 姚丽萍, 徐仕进, 等.复合材料学报, 2017, 34(5),1159.
14 Zhang Na, Zhou Jian, Xu Mingfeng, et al. Explosion and Shock Waves.http://kns.cnki.net/kcms/detail/51.1148.O3.20200325.1432.026.html(in Chinese).
张娜, 周健, 徐名凤, 等.爆炸与冲击. http://kns.cnki.net/kcms/detail/51.1148.O3.20200325.1432.026.html.
15 Zhao Huanqi, Li Guozhong.Acta Materiae Compositae Sinica, 2014, 31(1),140(in Chinese).
赵焕起, 李国忠.复合材料学报, 2014, 31(1),140.
16 Sun Weiwei, Zhang Zhengyang, Dong Haolin, et al. Concrete, 2016(12),86(in Chinese).
孙巍巍, 张正洋, 董浩林, 等.混凝土, 2016(12),86.
17 Wang Z B, Zhang J, Wang J H, et al. Journal of Composite Materials, 2015, 49(18),2169.
18 Han Shicheng, Zhang Cong, Hua Yuan. Bulletin of the Chinese Ceramic Society, 2019, 38(1),77(in Chinese).
韩世诚, 张聪, 华渊.硅酸盐通报, 2019, 38(1),77.
19 Ali M, Soliman A M, Nehdi M L.Materials and Design, 2017, 117,139.
20 Zhou Y W, Xi B, Yu K Q, et al. Materials, 2018, 11(8),1448.
21 Zhang W, Yin C L, Ma F Q, et al. Materials, 2018, 11(7),1147.
22 Xu Shilang, Li Qinghua, Li Hedong. China Civil Engineering Journal, 2007, 40(12),69(in Chinese).
徐世烺, 李庆华, 李贺东. 土木工程学报, 2007, 40(12),69.
23 Zhu Z F, Wang W W, Harries K A, et al. Journal of Composites for Construction, 2018, 22(6),163.
24 Deng Anzhong, Yuan Wang, Xie Ya, et al. Journal of Functional Materials and Devices, 2019, 25(4),247(in Chinese).
邓安仲, 袁旺, 解亚, 等.功能材料与器件学报, 2019, 25(4),247.
25 Li L, Liu W L, Wu J, et al. Materials, 2019, 12(17),2666.
[1] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[4] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[5] 何晓雁, 张智鑫, 赵燕茹, 郝贠洪, 秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估[J]. 材料导报, 2021, 35(20): 20035-20039.
[6] 乔师帅, 王元, 贾朝阳, 蒋一昌, 魏剑. PMMA光纤直径对透光水泥基复合材料性能的影响[J]. 材料导报, 2021, 35(18): 18059-18063.
[7] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[8] 郭伟娜, 张鹏, 鲍玖文, 孙治国, 田玉鹏, 赵凯月, 赵铁军. 应变硬化水泥基复合材料动力学性能研究现状与进展[J]. 材料导报, 2021, 35(17): 17199-17209.
[9] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[10] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[11] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[12] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21): 3620-3629.
[15] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed