Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17190-17198    https://doi.org/10.11896/cldb.20060229
  无机非金属及其复合材料 |
超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展
马衍轩1, 李梦瑶1, 朱鹏飞1, 徐亚茜1, 于霞1, 彭帅2, 张鹏1, 张颖锐1, 王金华1
1 青岛理工大学土木工程学院,青岛 266033
2 中国三峡建设管理有限公司乌东德工程建设部,昆明 650000
Research Progress on Multi-scale Design and Blast-resistant Properties of Ultra-high Performance Cementitious Composites
MA Yanxuan1, LI Mengyao1, ZHU Pengfei1, XU Yaqian1, YU Xia1, PENG Shuai2, ZHANG Peng1, ZHANG Yingrui1, WANG Jinhua1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2 Wudongde Project Construction Department, China Three Gorges Projects Development Co.,Ltd., Kunming 650000, China
下载:  全 文 ( PDF ) ( 5419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能水泥基复合材料(Ultra-high performance cementitious composites,UHPCC)是一种具有超高强度、超高韧性、超高耐久性和良好体积稳定性的新型水泥基复合材料。超高性能水泥基复合材料因其优异的力学性能和耐久性能,在超高层建筑、桥梁、隧道、海上平台、核反应堆安全壳及军事防护工程等领域中具有广阔的应用前景。
近年来,国内外意外爆炸事故和恐怖爆炸袭击事件时有发生,许多建筑和防护工程面临着爆炸等强动载的冲击作用,而现有的大多数建筑结构无法抵御爆炸载荷的冲击,将建筑结构爆炸风险降低到可接受水平迫在眉睫。目前存在的防护工程材料大多为普通强度(C30~C50)等级的混凝土或普通纤维增强混凝土,抗爆能力普遍较弱,研究强度等级高、抗爆炸性能好的超高性能水泥基复合材料逐渐成为防护工程材料研究的热点。
本文通过对爆炸现象的基本特点及对建筑物破坏形式的分析,结合对水泥基复合材料抗爆炸原理的研究,从纤维混凝土、珍珠层混凝土、梯度混凝土等细微观结构设计,以及泄爆结构、性能目标等宏观结构设计两个角度,重点综述了抗爆炸高性能水泥基复合材料的细-微-宏观多尺度结构设计及其性能优化研究进展,对爆炸作用下超高性能水泥基复合材料的结构损伤破坏机理研究进展以及应用现状进行了阐述。最后,进一步探讨了抗爆炸超高性能水泥基复合材料研究中存在的问题,并展望了相关研究与发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马衍轩
李梦瑶
朱鹏飞
徐亚茜
于霞
彭帅
张鹏
张颖锐
王金华
关键词:  超高性能水泥基复合材料  抗爆炸  多尺度结构设计  损伤破坏机理    
Abstract: UHPCC are a new type of cementitious composite materials with ultra-high strength, toughness and durability as well as good volume stability. UHPCC have broad prospects for applications in the fields of ultra-high buildings, bridges, tunnels, offshore platforms, nuclear reactor containment and military protection engineering due to their excellent mechanical properties and durability.
In recent years, accidental explosion accidents and terrorist explosion attacks have occurred frequently at home and abroad. Many buildings and protection engineering are facing the impact of strong dynamic loads such as explosions. However, most existing building structures cannot withstand the impact of blast loads completely, and it is extremely urgent to reduce the blast risk of building structures to an acceptable level. At present, most of the protective engineering materials are ordinary strength (C30—C50) grade concrete or ordinary fibre reinforced concrete, and the anti-blast ability is generally weak. Therefore, research on the UHPCC with high strength levels and good blast-resistant properties has gradually become a hot spot in protective engineering materials.
Based on the basic characteristics analysis of blast phenomenon and building destruction, combined with the research on the anti-blast principle of the cementitious composites, this article focuses on the fine/micro-structure design of fibre-, nacre- and gradient concrete, as well as macro-structure design such as explosion venting structure and property objectives, and the research progress of multi-scale structure design and blast-resistant properties of the UHPCC is mainly reviewed. The structural damage status and destruction mechanism of the UHPCC under the action of explosive are described. Finally, the existing problems in the research of anti-blast UHPCC are further discussed, and their development trends are prospected.
Key words:  ultra-high performance cementitious composites    blast-resistant    multi-scale structure design    damage mechanism
                    发布日期:  2021-09-26
ZTFLH:  TU528  
基金资助: 国家自然科学基金项目(51408330;51922052);山东省自然科学基金项目(ZR2018JL018);山东省优秀中青年科学家科研奖励基金项目(BS2014CL031)
通讯作者:  yxma@qut.edu.cn   
作者简介:  马衍轩,男,1985年11月生,工学博士,副教授,硕士研究生导师,现任青岛理工大学土木工程学院材料科学与工程系主任、材料科学与工程专业建设负责人等职务,国际防护工程学会(IAPS)会员,中国地震学会基础设施防震减灾青年委员会委员,中国硅酸盐学会高级会员,中国化工学会会员,山东省混凝土与水泥制品专家委员会委员,山东省材料学会会员,青岛市专业技术评审专家,Polymer Reviews等JCR一区TOP国际期刊审稿专家。主要从事智能自修复体系、抗爆抗冲击防护体系等防灾减灾建筑及装备材料与结构的全寿命周期多尺度一体化设计研究。主持国家自然科学基金、山东省优秀中青年科学家科研奖励基金等多项国家、省部级科研项目。已公开发表Materials & Design等SCI、EI收录学术论文近30篇,申请PCT专利3项,申请国家发明专利26项,其中授权25项。
引用本文:    
马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
MA Yanxuan, LI Mengyao, ZHU Pengfei, XU Yaqian, YU Xia, PENG Shuai, ZHANG Peng, ZHANG Yingrui, WANG Jinhua. Research Progress on Multi-scale Design and Blast-resistant Properties of Ultra-high Performance Cementitious Composites. Materials Reports, 2021, 35(17): 17190-17198.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060229  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17190
1 Zhang W H, Liu P Y, Lyu Y J.Materials Reports A: Review Papers, 2019, 33(10), 3257(in Chinese).
张文华, 刘鹏宇, 吕毓静.材料导报:综述篇, 2019, 33(10), 3257.
2 Koichi M, Tetsuya I, Toshiharu K. Journal of Advanced Concrete Technology, 2003, 1(2), 91.
3 Authors U. Army Corps of Engineering, 2008, 22, 811.
4 Goswami A, Adhikary S D. Construction and Building Materials, 2019, 204, 224.
5 Huang Z Q, Liu X, Pi X M, et al.Concrete, 2017(5), 63(in Chinese).
黄志强, 刘鑫, 皮新萌, 等. 混凝土, 2017(5), 63.
6 Luccioni B, Isla F, Codina R, et al.International Journal of Impact Engineering, 2017, 107, 23.
7 Aoude H, Dagenais F, Bunell R, et al.International Journal of Impact Engineering, 2015, 80, 184.
8 Zhou B K, Wang A B, Yang X M, et al.Explosion and Shock Waves, 2006(3), 234(in Chinese).
周布奎, 王安宝, 杨秀敏,等. 爆炸与冲击, 2006(3), 234.
9 Duan T T, Wang D G, Wang J H, et al.New Chemical Materials, 2019, 47(6), 168(in Chinese).
段婷婷, 汪得功, 王吉辉, 等. 化工新型材料, 2019, 47(6), 168.
10 Sun Y Y, Yu Z W, Wang Z G.Advances in Civil Engineering, 2016, 2016, 1.
11 Sun Y, Yu Z, Wang Z, et al.Construction & Building Materials, 2015, 96, 484.
12 余志武, 孙宇雁, 王子国, 等. 中国专利, CN103774769A, 2014.
13 王子国, 孙宇雁, 贺健, 等.中国专利, CN204590298U, 2015.
14 Zhang P, Wittmann F H, Vogel M, et al.Cement and Concrete Research, 2017, 100(10), 60.
15 Wang Y R, Cao Y, Zhang P, et al.Construction and Building Materials, 2019,209, 566.
16 马衍轩, 张颖锐, 杨蒙蒙, 等. 中国专利,CN106495592A, 2017.
17 Gao Q, Wang L M, Zhong H, et al.Journal of Nanjing University of Science and Technology, 2019, 43(2), 141(in Chinese).
高强, 王良模, 钟弘, 等. 南京理工大学学报, 2019, 43(2), 141.
18 马衍轩, 张颖锐, 雷欣, 等. 中国专利,CN106499121A, 2017.
19 Woodard B, Kashtalyan M.International Journal of Mechanical Sciences, 2011, 53(10), 872.
20 Gardner N, Wang E, Shukla A.Composite Structures, 2012, 94(5), 1755.
21 Liu X, Tian X G, Lu T J, et al.Composite Structures, 2012, 94(8), 2485.
22 Liu X, Tian X G, Lu T J, et al.International Journal of Mechanical Sciences, 2014, 84, 61.
23 Lai J, Yang H, Wang H, et al.Construction and Building Materials, 2019, 196, 499.
24 Zhang L, Heber R, Wright J T, et al.International Journal of Impact Engineering, 2014, 65(2), 185.
25 Li S Q, Li X, Wu G Y, et al.Explosion and Impact, 2016, 36(3), 333(in Chinese).
李世强, 李鑫, 吴桂英, 等. 爆炸与冲击, 2016, 36(3), 333.
26 Mastali M, Naghibdehi M G, Naghipour M, et al.Construction and Buil-ding Materials, 2015, 95(7), 296.
27 Gao X N, Wang S P, Jiang Y.Engineering Mechanics, 2010, 27(4), 226(in Chinese).
高轩能, 王书鹏, 江媛.工程力学, 2010, 27(4), 226.
28 Zhao P D, Huang S, Yin J P, et al.Research on Chinese Ships, 2019, 14(3), 58(in Chinese).
赵鹏铎, 黄松, 尹建平, 等. 中国舰船研究, 2019, 14(3), 58.
29 Liu Z C, Song W Y, Ji W T, et al. Thermal Science and Technology, 2014, 13(4), 359(in Chinese).
刘志超, 宋稳亚, 纪文涛,等. 热科学与技术, 2014, 13(4), 359.
30 Cherrin L, Vilnay M, Shufrrin I.International Journal of Mechanical Sciences, 2016, 106, 331.
31 Yan, J B, Liu, Y, Huang, F L. Advances in Civil Engineering, 2019,2019,1.
32 Yang J X, Shi C, Wang S N, et al.Engineering Journal of Disaster Prevention and Reduction, 2019, 39(2), 217(in Chinese).
杨俊雄, 石崇, 王盛年, 等. 防灾减灾工程学报, 2019, 39(2), 217.
33 Yang D, Xiao R, Zhu H. Engineering Structures, 2017, 147, 679.
34 Yungwirth C J, Radford D D, Aronson M, et al.Composites Part B Engineering, 2008, 39(3), 556.
35 Zhao Y T, Yi Y J, Chu C.Vibration and Shock, 2017(8), 41(in Chinese).
赵跃堂,易义君,储程. 振动与冲击, 2017(8), 41.
36 Taylor H F W.Advanced Cement Based Materials, 1993, 1(1), 38.
37 Xue S B, Zhang P, Bao J W, et al.Materials Characterization, DOI: 10.1016/j.matchar.2019.110085.
38 Rong Z D, Wang R, Lin F B.Journal of Shenzhen University Science and Engineering, 2013, 30(6), 611(in Chinese).
戎志丹, 王瑞, 林发彬. 深圳大学学报理工版, 2013, 30(6), 611.
39 Bao J W, Li S G, Zhang P, et al.Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2019.11.
40 Liu J C, Rong C, Chen L.Journal of Building Structures, 2015, 36 (1), 349(in Chinese).
柳锦春, 荣超, 陈力. 建筑结构学报, 2015, 36(1), 349.
41 Zong R Q, Bai P. Blasting, 2016, 33(3), 140(in Chinese).
宗瑞卿, 白盼. 爆破, 2016, 33(3), 140.
42 Hidallana-Gamage H D, Thambiratnam D P, Perera N J.Engineering Failure Analysis, 2014, 45(8), 65.
43 Zhang S, Wang G, Wang C, et al.Engineering Failure Analysis, 2014, 36(1), 49.
44 Zhang B Y, Zhao W, Wang W, et al.Journal of Loss Prevention in the Process Industries, 2014, 30(3), 37.
45 Zhang B Y, Zhao W, Wang L, et al. Explorationand Shock, 2017, 37(4), 601(in Chinese).
张博一, 赵威, 王理, 等. 爆炸与冲击, 2017, 37(4), 601.
46 Song K J, Long Y, Ji C, et al.Journal of Vibration and Shock, 2016, 35(10), 133(in Chinese).
宋克健, 龙源, 纪冲, 等.振动与冲击, 2016, 35(10), 133.
47 Zhang D D, Yu R Q, Yao M M, et al.IOP Publishing, 2019, 267, 032066.
48 Mutalib A A, Hao H.Journal of Performance of Constructed Facilities, 2011, 25(5), 360.
49 Chen L, Fang Q, Fan J, et al. Advances in Structural Engineering, 2014, 17(6), 817.
50 Tian L, Fan Q H.Journal of Architectural Science and Engineering, 2016, 33(1), 46(in Chinese).
田力, 范其华. 建筑科学与工程学报, 2016, 33(1), 46.
51 Wang D, Qian X M, Yuan M Q, et al. Journal of Loss Prevention in the Process Industries, 2017,49,215.
52 Malvar L J, Crawford J E, Morrill K B.Composite Structures, 2007, 83(11), 601.
53 Pichandi S, Rana S, Oliveira D, et al.Journal of Reinforced Plastics and Composites, 2013, 32, 1477.
54 Li P P, Sluijsmans M J C, Brouwers H J H, et al.Composites Part B, 183, 2020, 107680.
55 Wang Z G, Wu H, Fang Q, et al.Thin-Walled Structures, 2020, 147, 106515.
[1] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[2] 张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
[3] 柴源, 牛勇, 李文杰, 吕海波. 珊瑚骨料混凝土改性技术研究进展[J]. 材料导报, 2021, 35(15): 15134-15142.
[4] 于泳, 金祖权, 邵爽爽, 李哲. 蒸养过程中水泥基材料抗拉性能试验研究[J]. 材料导报, 2021, 35(14): 14052-14057.
[5] 刘鑫, 倪铖伟, 孙东宁, 邵志伟, 史云强. 干湿循环下含初始损伤泡沫混凝土劣化机理研究[J]. 材料导报, 2021, 35(14): 14065-14071.
[6] 刘国建, 张云升, 刘诚, 吴萌, 逄博. 模拟混凝土孔溶液中钢筋腐蚀与等效电路选取[J]. 材料导报, 2021, 35(14): 14072-14078.
[7] 王爱国, 王星尧, 孙道胜, 朱颖灿, 刘开伟, 经验, 管艳梅. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 13001-13010.
[8] 刘超, 余伟航, 刘化威, 胡天峰, 胡慧敏. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13): 13025-13031.
[9] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[10] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[11] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[12] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[13] 赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
[14] 刘娟红, 马虹波, 段品佳, 周昱程, 郭子栋. 硫酸盐干湿循环环境下超深井井壁混凝土抗腐蚀性能[J]. 材料导报, 2021, 35(12): 12081-12086.
[15] 汪海波, 徐成, 王梦想, 徐颖. 碳化龄期对水泥砂浆动态力学特性影响试验研究[J]. 材料导报, 2021, 35(12): 12087-12091.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed