Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13109-13118    https://doi.org/10.11896/cldb.19120128
  无机非金属及其复合材料 |
混凝土内氯离子扩散影响因素的研究综述
杨燕1,2, 谭康豪1,2, 覃英宏1,2,*
1 广西大学土木建筑工程学院,南宁 530004
2 广西大学工程防灾与结构安全教育部重点实验室,南宁 530004
Review of Research on the Influencing Factors of Chloride Ion Diffusion in Concrete
YANG Yan1,2, TAN Kanghao1,2, QIN Yinghong1,2,*
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 3468KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着建筑行业的迅速发展,钢筋混凝土结构得到了广泛应用。但钢筋混凝土结构长期处在氯盐环境中易发生钢筋腐蚀现象,从而降低结构的耐久性。因此,全面系统地认识混凝土内氯离子扩散的影响有助于解决结构氯盐侵蚀问题。氯离子在混凝土中的传输机制极其复杂,其中扩散是氯离子传输的主要机制。文章梳理了国内外近年来关于混凝土内氯离子扩散的研究进展,重点评述了混凝土内氯离子扩散的影响因素,笔者认为低水灰比、加入掺和料、适当增加保护层厚度、限制裂缝宽度等基本措施可以有效减缓钢筋腐蚀。若结构处于恶劣环境中,在采取基本措施的基础上,还需要进一步采取附加措施,主要包括添加缓蚀剂、进行表面涂层、电化学处理等。这些措施得到了一系列的理论及试验验证,为工程应用提供了可行性参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨燕
谭康豪
覃英宏
关键词:  钢筋混凝土  氯盐环境  扩散模型  影响因素  防锈蚀措施  结构耐久性    
Abstract: With the rapid development of the construction industry, reinforced concrete structures have been widely used. However, reinforced concrete structure is prone to corrosion of steel bars in the chloride environment for a long time, thereby reducing the durability of the structure. Therefore, a comprehensive and systematic understanding of the effect of chloride ion diffusion in concrete can help solve the problem of chloride salt erosion of structures. The transmission mechanism of chloride ions in concrete is extremely complicated, and diffusion is the main mechanism of chloride ion transmission. The article summarizes the research progress on the chloride ion diffusion and reviews its influencing factors in concrete in recent years at home and abroad. It is indicate that some basic measures by decreasing water-cement ratio, adding admixtures, appro-priately increasing the thickness of the protective layer, and limiting the width of cracks can effectively slow down the corrosion of steel bars. To protect the reinforced structure in a harsh environment, these measurements must be supplementary by others such as the addition of corrosion inhibitors, surface coating, and electrochemical treatment, etc. These supplementary measurements have been verified by a series of theories and experiments, which provide a feasible reference for engineering applications.
Key words:  reinforced concrete    chloride environment    diffusion model    influencing factor    anti-corrosion measurement    structural durability
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TU528  
基金资助: 广西研究生教育创新计划资助项目(YCBZ2021022);广西高等学校高水平创新团队及卓越学者计划
作者简介:  杨燕,2018年6月毕业于广西大学,获得工学学士学位。现为广西大学土木建筑工程学院硕士研究生,在覃英宏教授的指导下进行研究。目前主要研究领域为混凝土材料耐久性。
覃英宏,广西大学土木建筑工程学院教授、博士研究生导师。2005年7月毕业于中国地质大学(武汉),2008年7月硕士毕业于中科院寒旱所冻土工程国家重点实验室,2011年6月在密歇根理工大学取得博士学位,2014年1月至2015年1月在美国劳伦斯伯克利国家实验室进行博士后研究工作。2011年7月回国后,先后入选广西高校海外百人计划、广西高层次人才E类、广西卓越学者计划项目;两次获广西科技进步二等奖(2017、2019)。主要从事冻土路基、冷路面和城市热岛方面的研究工作。近年来,以第一作者在Renewable & Sustainable Energy Reviews、Energy、Construction and Building Materials等期刊发表SCI论文43篇,SCI他引1 377次,单篇最高他引203次。
引用本文:    
杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
YANG Yan, TAN Kanghao, QIN Yinghong. Review of Research on the Influencing Factors of Chloride Ion Diffusion in Concrete. Materials Reports, 2021, 35(13): 13109-13118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120128  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13109
1 Pandey J L, Banerjee M. Anti-Corrosion Methods and Materials,1998,45(1),5.
2 Papadakis V G, Fardis M N, Vayenas C G. Chemical Engineering Science,1996,51(4),505.
3 Moreno M, Morris W, Alvarez M G, et al. Corrosion Science,2004,46(11),2681.
4 Cruz R P V, Nishikata A, Tsuru T. Corrosion Science,1998,40(1),125.
5 Ann K Y, Song H W. Corrosion Science,2007,49(11),4113.
6 Arya C, Buenfeld N R, Newman J B. Cement and Concrete Research,1990,20(2),291.
7 Hope B B, Page J A, Poland J S. Cement and Concrete Research,1985,15(5),863.
8 Ahmad S. Cement and Concrete Composites,2003,25(4),459.
9 Yuan Q, Shi C J, De Schutter G, et al. Construction and Building Materials,2009,23(1),1.
10 Shi X M, Xie N, Fortune K, et al. Construction and Building Materials,2012,30,125.
11 Abdulrahman A S, Ismail M, Hussain M S. Scientific Research and Essays,2011,6(20),4152.
12 Raja P B, Ismail M, Ghoreishiamiri S, et al. Chemical Engineering Communications,2016,203(9),1145.
13 Pan X Y, Shi Z G, Shi C J, et al. Construction and Building Materials,2017,132,578.
14 Chang H L, Mu S, Xie D Q, et al. Construction and Building Materials,2017,131,16.
15 Collepardi M, Marcialis A, Turriziani R. Journal of the American Ceramic Society,1972,55(10),534.
16 Andrade C. Cement and Concrete Research,1993,23(3),724.
17 Shekarchi M, Rafiee A, Layssi H. Cement and Concrete Composites,2009,31(10),769.
18 Mangat P S, Molloy B T. Materials and Structures,1994,27(6),338.
19 Amey S L, Johnson D A, Miltenberger M A, et al. Structural Journal,1998,95(2),205.
20 Thomas M D A, Bamforth P B. Cement and Concrete Research,1999,29(4),487.
21 Martín-Pérez B, Zibara H, Hooton R D, et al. Cement and Concrete Research,2000,30(8),1215.
22 Oh B H, Jang S Y. Cement and Concrete Research,2007,37(1),47.
23 Li L Y, Xia J, Lin S S. Construction and Building Materials,2012,26(1),295.
24 De Vera G, Climent M A, Viqueira E, et al. Cement and Concrete Research,2007,37(5),714.
25 Wang Y Z, Wu L J, Wang Y C, et al. Construction and Building Mate-rials,2018,159,297.
26 Chidiac S E, Shafikhani M. Construction and Building Materials,2019,224,773.
27 Shafikhani M, Chidiac S E. Cement and Concrete Research,2020,133,106049.
28 Yu S, Jin H. Construction and Building Materials,2020,258,119645.
29 Yang C C, Chiang C T. Materials Chemistry and Physics,2005,93(1),202.
30 Leng F G, Feng N Q, Lu X Y. Cement and Concrete Research,2000,30(6),989.
31 Chalee W, Jaturapitakkul C, Chindaprasirt P. Marine Structures,2009,22(3),341.
32 Hossain K M A, Lachemi M. Cement and Concrete Research,2004,34(4),695.
33 Arya C, Buenfeld N R, Newman J B. Cement and Concrete Research,1987,17(6),907.
34 Glass G K, Buenfeld N R. Corrosion Science,2000,42(2),329.
35 Hussain S, Al-Musallam A, Al-Gahtani A. Cement and Concrete Research,1995,25(7),1543.
36 Mindess S, Young J F, Darwin D. Concrete 2nd Edition, Technical Documents, USA,2003.
37 Poon C S, Lam L, Wong Y L. Journal of Materials in Civil Engineering,1999,11(3),197.
38 Poon C S, Kou S C, Lam L. Construction and Building Materials,2006,20(10),858.
39 Boddy A, Hooton R D, Gruber K A. Cement and Concrete Research,2001,31(5),759.
40 Cheewaket T, Jaturapitakkul C, Chalee W. Construction and Building Materials,2010,24(8),1352.
41 Chalee W, Jaturapitakkul C. Materials and Structures,2009,42(4),505.
42 Gruber K A, Ramlochan T, Boddy A, et al. Cement and Concrete Composites,2001,23(6),479.
43 Roy D M, Jiang W M, Silsbee M R. Cement and Concrete Research,2000,30(12),1879.
44 Sandberg P, Tang L, Andersen A. Cement and Concrete Research,1998,28(10),1489.
45 Toutanji H, McNeil S, Bayasi Z. Cement and Concrete Research,1998,28(7),961.
46 Hooton R D, Titherington M P. Cement and Concrete Research,2004,34(9),1561.
47 Scott A, Alexander M G. Magazine of Concrete Research,2007,59(7),495.
48 Khatib J M, Mangat P S. Cement and Concrete Research,2002,32(11),1743.
49 Dousti A, Rashetnia R, Ahmadi B, et al. Construction and Building Materials,2013,49,393.
50 Lu C H, Gao Y, Cui Z W, et al. Journal of Materials in Civil Enginee-ring,2015,27(12),04015036.
51 Aldea C M, Shah S P, Karr A. Journal of Materials in Civil Engineering,1999,11(3),181.
52 Wang K J, Jansen D C, Shah S P, et al. Cement and Concrete Research,1997,27(3),381.
53 Jacobsen S, Marchand J, Boisvert L. Cement and Concrete Research,1996,26(6),869.
54 Kwon S J, Na U J, Park S S, et al. Structural Safety,2009,31(1),75.
55 Djerbi A, Bonnet S, Khelidj A, et al. Cement and Concrete Research,2008,38(6),877.
56 Wu J Q, Diao B, Ye Y H, et al. Advances in Materials Science and Engineering,2017,2017,13.
57 Mangat P S, Gurusamy K. Cement and Concrete Research,1987,17(3),385.
58 Park S S, Kwon S J, Jung S H. Construction and Building Materials,2012,29,183.
59 Du F Y, Jin Z Q, She W, et al. Construction and Building Materials,2020,263,120099.
60 Jang S Y, Kim B S, Oh B H. Cement and Concrete Research,2011,41(1),9.
61 Wang H L, Dai J G, Sun X Y, et al. Construction and Building Mate-rials,2016,107,216.
62 Yang L, Gao D Y, Zhang Y S, et al. Construction and Building Mate-rials,2018,176,652.
63 Yoon I S, Schlangen E, Rooij M R D, et al. Key Engineering Materials,2007,348,769.
64 Li Y, Chen X H, Jin L, et al. Construction and Building Materials,2016,127,425.
65 Caré S. Construction and Building Materials,2008,22(7),1560.
66 Xu Y, Wong Y L, Poon C S, et al. Cement and Concrete Research,2001,31(7),1065.
67 Chan Y N, Luo X, Sun W. Cement and Concrete Research,2000,30(2),247.
68 Poon C S, Azhar S, Anson M, et al. Cement and Concrete Research,2001,31(9),1291.
69 Poon C S, Azhar S, Anson M, et al. Cement and Concrete Composites,2003,25(1),83.
70 Panesar D K, Chidiac S E. Journal of Cold Regions Engineering,2011,25(4),133.
71 Samson E, Marchand J. Cement and Concrete Research,2007,37(3),455.
72 Dhir R K, Jones M R, Elghaly A E. Cement and Concrete Research,1993,23(5),1105.
73 Farahani A, Taghaddos H, Shekarchi M. Cement and Concrete Compo-sites,2015,59,10.
74 Nielsen E P, Geiker M R. Cement and Concrete Research,2003,33(1),133.
75 Climent M A, De Vera G, López J F, et al. Cement and Concrete Research,2002,32(7),1113.
76 Zhang J, Gao Y, Han Y D. Journal of Materials in Civil Engineering,2012,24(3),289.
77 Hong K, Hooton R D. Cement and Concrete Research,1999,29(9),1379.
78 Wu J, Li H M, Wang Z, et al. Construction and Building Materials,2016,112,733.
79 Ormellese M, Lazzari L, Goidanich S, et al. Corrosion Science,2009,51(12),2959.
80 Ann K Y, Jung H S, Kim H S, et al. Cement and Concrete Research,2006,36(3),530.
81 Berke N S, Hicks M C. Cement and Concrete Composites,2004,26(3),191.
82 Ormellese M, Berra M, Bolzoni F, et al. Cement and Concrete Research,2006,36(3),536.
83 Satapathy A K, Gunasekaran G, Sahoo S C, et al. Corrosion Science,2009,51(12),2848.
84 Bautista A, González J A. Cement and Concrete Research,1996,26(2),215.
85 Almusallam A A, Khan F M, Dulaijan S U, et al. Cement and Concrete Composites,2003,25(4),473.
86 Scarfato P, Maio L D, Fariello M L, et al. Cement and Concrete Compo-sites,2012,34(3),297.
87 Kumar A P, Depan D, Tomer N S, et al. Progress in Polymer Science,2009,34(6),479.
88 Diamanti M V, Brenna A, Bolzoni F, et al. Construction and Building Materials,2013,49,720.
89 Glass G K, Chadwick J R. Corrosion Science,1994,36(12),2193.
90 Huang T R, Huang X J, Wu P C. International Journal of Electrochemical Science,2014,9,4589.
91 Haleem S M A E, Wanees S A E, Aal E E A E, et al. Corrosion Science,2010,52(2),292.
92 Malik A U, Andijani I, Al-Moaili F, et al. Cement and Concrete Compo-sites,2004,26(3),235.
93 Morris W, Vázquez M. Cement and Concrete Research,2002,32(2),259.
94 Salawu A A, Ismail M, Majid M Z A, et al. Journal of Cleaner Production,2014,67,139.
95 Palanisamy S P, Maheswaran G, Selvarani A G, et al. Journal of Buil-ding Engineering,2018,19,376.
96 Mourya P, Banerjee S, Singh M M. Corrosion Science,2014,85,352.
97 Liu Y Q, Song Z J, Wang W Y, et al. Journal of Cleaner Production,2019,214,298.
98 Dong S G, Zhao B, Lin C J, et al. Construction and Building Materials,2012,28(1),72.
99 Mohammed M H S, Raghavan R S, Knight G S, et al. Arabian Journal for Science and Engineering,2014,39(5),3535.
10 0 Jones M R, Dhir R K, Gill J P. Cement and Concrete Research,1995,25(1),197.
1 Zhang Z H, Yao X, Zhu H J. Applied Clay Science,2010,49(1),1.
2 Zhang Z H, Yao X, Wang H. Applied Clay Science,2012,67,57.
3 Marcotte T D, Hansson C M, Hope B B. Cement and Concrete Research,1999,29(10),1555.
4 Carmona J, Garcés P, Climent M A. Corrosion Science,2015,96,102.
5 Hassanein A M, Glass G K, Buenfeld N R. Corrosion,1999,55(9),840.
6 Glass G K, Hassanein A M, Buenfeld N R. Corrosion Science,2001,43(6),1111.
7 Page C L, Yu S W. Magazine of Concrete Research,1995,47(170),23.
8 Ihekwaba N M, Hope B B, Hansson C M. Cement and Concrete Research,1996,26(2),267.
9 Saraswathy V, Lee H S, Karthick S, et al. Construction and Building Materials,2018,158,549.
11 0 Elsener B. Materials and Corrosion,2008,59(2),91.
1 Polder R B. Construction and Building Materials,1996,10(1),83.
2 de Almeida S L R, de Medeiros M H F, Pereira E, et al. Construction and Building Materials,2017,145,435.
3 Chandra Paul S, Mbewe P B, Kong S Y, et al. Materials,2019,12(7),1112.
4 Tan K H, Pang X J, Qin Y H, et al. Construction and Building Mate-rials,2020,263,120616.
[1] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[2] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[3] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[4] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[5] 尚明刚, 何忠茂, 乔宏霞, 冯琼, 苏富赟, 张璐. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064.
[6] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[7] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[8] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[9] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[10] 刘帅, 马兴元. 封闭型无溶剂聚氨酯的研究进展[J]. 材料导报, 2019, 33(23): 3892-3899.
[11] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[12] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[13] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[14] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[15] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed