Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2362-2369    https://doi.org/10.11896/cldb.18050182
  无机非金属及其复合材料 |
考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究
辛景舟1, 周建庭1, 周应新2,3, 苏欣1,4, 冉文兴1
1 重庆交通大学土木工程学院,重庆 400074;
2 云南交投集团投资有限公司,昆明 650300;
3 云南武易高速公路有限公司,楚雄 675000;
4 邢台职业技术学院,邢台 054035
Experimental Study on Bearing Capacity Evolution of Reinforced Concrete Compression-bending Members Considering Material Deterioration
XIN Jingzhou1, ZHOU Jianting1, ZHOU Yingxin2,3, SU Xin1,4, RAN Wenxing1
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074;
2 Yunnan Investment Group Investment Co. Ltd., Kunming 650300;
3 Yunnan Wuyi Expressway Co. Ltd., Chuxiong 675000;
4 Xingtai Polytechnic College, Xingtai 054035
下载:  全 文 ( PDF ) ( 11277KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 拱、柱等压弯构件作为一种基本构件形式,常应用于高层建筑、大型空间结构和大跨桥梁中。随着服役年限的延长,其不可避免地会遭受锈蚀、碳化等。基于结构的安全性角度出发,其承载力的演化一直是学界与工程界最为关注的问题之一。为研究锈蚀对钢筋混凝土(RC)压弯构件极限承载力的影响,本工作以RC拱桥为基本研究对象,设计制作了15片同截面尺寸的RC柱,基于法拉第定律获取锈蚀构件,讨论了初始锈胀裂缝的分布情况,研究了锈胀柱的裂缝发展、跨中变形和应变、极限承载力及破坏形态。基于数字图像相关技术,揭示了锈损RC压弯构件破坏全过程应变场演化规律。结果表明:(1)随着锈蚀率的增加,锈胀裂缝分布范围、宽度、长度呈增长趋势,RC柱纵向/横向刚度降低,压缩位移/挠度增大,承载能力下降,承载力最大下降40%;(2)偏心距较小的锈蚀柱在荷载作用下的截面应变仍基本符合平截面假定,随着偏心距的增大,平截面假定存在失效趋势;(3)锈胀未改变偏压的失效模式,所有压弯构件均为受压侧脆性破坏,锈蚀损伤改变了压弯构件初始偏心距,小偏心构件存在向大偏心破坏演变的可能;(4)因锈胀裂缝影响,横向应变分层明显。本工作系统描述了锈损RC压弯构件承载力演化行为,可为基于等效梁柱法的RC拱桥承载力衰变分析奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛景舟
周建庭
周应新
苏欣
冉文兴
关键词:  锈蚀  钢筋混凝土构件  承载力演化  数字图像相关技术  拱桥    
Abstract: As the basic component, eccentric compression reinforced concrete (RC) members, such as arches and columns are widely used in high-rise buildings, large space structures and long-span bridges. With an extension in service years, eccentric compression RC members inevitably suffer from performance deterioration, the evolution of its bearing capacity has been one of the most concerned issues in the academic and engineering circles. To study the effect of corrosion damage on the bearing capacity of eccentric compression RC members, this work takes the RC arch bridges as the basic research object, fifteen RC columns with the same section size were designed and fabricated. The corrosion components were obtained based on Faraday's law. The distribution of corrosive cracks, the crack development, the displacements and strains, the bearing capacity and the failure patterns were studied. The strain field evolution law was also revealed based on the digital image correlation technology. The findings show that: (1) with the increase of corrosion rate, the distribution range, width and length of rust expansion cracks show an increasing trend, the compression displacement and deflection increase as the longitudinal and transverse stiffness of RC columns decrease, the bearing capacity decreases, and the maximum decrements of bearing capacity is about 40%; (2) the strain of the corroded columns with small eccentricity still accord with plane section assumption, while there is a failure trend for the plane section assumption with the increase of eccentricity; (3) rust expansion does not change the failure mode of eccentric compression members, the failure of the compression-bending members is due to brittle failure of compression side, corrosion damage changes the initial eccentricity, and small eccentric members may evolve to large eccentric failure; (4) the lateral strain field is chaotic, and the stratification is obvious due to the existence of rust and expansion cracks. This work systematically describes the behavior of the bearing capacity evolution of the corroded eccentric compression RC members, which could lay a so-lid starting point for the decay analysis of RC arch bridge bearing capacity based on equivalent beam-column principle.
Key words:  corrosion    reinforced concrete member    bearing capacity    digital image correlation technology    arch bridge
               出版日期:  2019-07-25      发布日期:  2019-06-19
ZTFLH:  TU375  
  U444  
基金资助: 国家重点研发计划(2017YFC0806007);国家杰出青年科学基金(51425801);重庆市人工智能技术创新重大主题专项重点研发
项目(cstc2017rgzn-zdyfX0029);云南省科技计划项目(2017IB025)
通讯作者:  jtzhou@cqjtu.edu.cn   
作者简介:  辛景舟,重庆交通大学在读博士研究生,主要从事桥梁健康监测与安全评估研究。
引用本文:    
辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
XIN Jingzhou, ZHOU Jianting, ZHOU Yingxin, SU Xin, RAN Wenxing. Experimental Study on Bearing Capacity Evolution of Reinforced Concrete Compression-bending Members Considering Material Deterioration. Materials Reports, 2019, 33(14): 2362-2369.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050182  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2362
1 Zhou J T, Li X G, Xia R C, et al. Sensors, 2017, 17(3), 603.
2 Zhang H, Liao L, Zhao R Q, et al. Sensors, 2016, 16(9), 1439.
3 Xin J Z, Zhou J T, Zhou J T, et al. Applied Sciences, 2019, 9, 24.
4 Castel A, François R, Arliguie G. Materials & Structures, 2000, 33(9), 539.
5 Zhu W, François R. Materials & Structures, 2015, 48(6), 1757.
6 Dong J, Zhao Y, Wang K, et al. Construction & Building Materials, 2017, 151, 208.
7 Wu Q, Yuan Y S, Zhu J, et al. Journal of China University of Mining & Technology, 2010, 39(6), 843(in Chinese).
吴庆, 袁迎曙, 朱金,等. 中国矿业大学学报, 2010, 39(6), 843.
8 Chen B C, Ye L. Journal of China & Foreign Highway, 2008, 28(2), 89(in Chinese).
陈宝春, 叶琳.中外公路, 2008, 28(2), 89.
9 Ronca P, Cohn M Z. Journal of the Structural Division, 1977, 105(2), 313.
10 Du R Y, Chen B C. Engineering Mechanics, 2013, 30(5), 42(in Chinese).
杜任远, 陈宝春. 工程力学, 2013, 30(5), 42.
11 Lin S S, Chen B C. Journal of Fuzhou University (Natural Science Edition), 2016, 44(1), 110(in Chinese).
林上顺, 陈宝春. 福州大学学报(自然科学版), 2016, 44(1), 110.
12 Li H J, Zhang J Q, Liu H Y, et al. Highway Engineering, 2016, 41(2), 89(in Chinese).
李宏江, 张劲泉, 刘汉勇,等. 公路工程, 2016, 41(2), 89.
13 Zhang J, Li C, Xu F, et al. Journal of Bridge Engineering, 2007, 12(1),4.
14 Fan Y F, Zhou J, Hu Z Q, et al. Structural Control & Health Monitoring, 2007, 14(6), 876.
15 Ma Y, Xu F, Wang L, et al. Engineering Structures, 2016, 117, 184.
16 Tapan M, Aboutaha R S. Construction & Building Materials, 2011, 25(5), 2596.
17 Li Q, Jin X Y. Journal of Zhejiang University (Engineering Science), 2015, 49(10), 1929(in Chinese).
李强, 金贤玉. 浙江大学学报(工学版), 2015, 49(10), 1929.
18 Yi W J, Lei G Q. Journal of Hunan University (Natural Sciences), 2008, 35(3), 6(in Chinese).
易伟建, 雷国强. 湖南大学学报(自然科学版), 2008, 35(3), 6.
19 Chen K J. Bridge Construction, 1983(1), 26(in Chinese).
陈克济. 桥梁建设, 1983(1), 26.
20 Zheng Z F, Chen B C. Engineering Mechanics, 1988, 5(4),72(in Chinese).
郑振飞, 陈宝春. 工程力学, 1988, 5(4), 72.
21 Hu D L, Yang D W, Chen X B. Journal of Xi'an University of Highway, 1991(3),1(in Chinese).
胡大琳, 杨大慰, 陈祥宝. 西安公路学院学报, 1991(3), 1.
22 The Model Arch Res. Journal of Southwest Jiaotong University, 1994, 29(4), 362(in Chinese).
结构工程试验中心拱桥课题组. 西南交通大学学报, 1994, 29(4), 362.
23 Mo X J. Study on residual bearing capacity evaluation mode of reinforced concrete rib arch bridge-take deck double rib arch bridge for example. Master's Thesis, Chongqing Jiaotong University, China, 2009(in Chinese).
莫喜晶. 钢筋混凝土肋拱桥剩余承载力评价模式研究——以上承式双肋拱桥为例. 硕士学位论文, 重庆交通大学, 2009.
24 Zhang J, Wang Z L, Qian Y J. Journal of Southwest Jiaotong University, 2009, 44(4), 564(in Chinese).
张晶, 王振领, 钱永久. 西南交通大学学报, 2009, 44(4), 564.
25 Huang Q W, Chen B C. Journal of Fuzhou University (Natural Science Edition), 2009, 37(3), 394(in Chinese).
黄卿维, 陈宝春. 福州大学学报(自然科学版), 2009(3), 394.
26 Li J. The study on moment magnification factor of reinforced concrete arch bridge.Doctor’s Thesis, Southwest Jiaotong University, China, 2012(in Chinese).
李俊. 钢筋混凝土拱桥的弯矩增大系数研究. 博士学位论文, 西南交通大学, 2012.
27 Ren W, Gai Y T, Zhang G. Journal of Shanghai Jiaotong University, 2015, 49(2), 232(in Chinese).
任伟, 盖轶婷, 张岗. 上海交通大学学报, 2015, 49(2), 232.
[1] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[2] 李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed