Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16055-16061    https://doi.org/10.11896/cldb.19060102
  无机非金属及其复合材料 |
盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型
王家滨1, 王斌1, 张凯峰2, 李恒1
1 西安工业大学建筑工程学院,西安 710021;
2 中建西部建设北方有限公司,西安 710065
Chloride Diffusion and Its Model of Shotcrete Lining Structure with Salt-frost Degradation
WANG Jiabin1, WANG Bin1, ZHANG Kaifeng2, LI Heng1
1 School of Civil & Architecture Engineering, Xi’an Technological University, Xi’an 710021, China;
2 China West Construction North Co., Ltd., Xi’an 710065, China
下载:  全 文 ( PDF ) ( 5619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以海洋环境喷射混凝土衬砌公路隧道为背景,采用快冻法,以3.5%(质量分数)NaCl溶液为冻融介质,开展隧道出入口盐冻损伤喷射混凝土衬砌结构氯离子扩散规律及模型研究。采用固液萃取法和电位法测试喷射混凝土中氯离子的含量,分析盐冻损伤、配合比参数及混凝土成型方式对氯离子扩散的影响。结果表明:盐冻损伤破坏了喷射混凝土表面的微观结构并增大了其孔隙率,增大了氯离子向混凝土内扩散的速率。低水胶比及低粉煤灰取代率的喷射混凝土氯离子含量及扩散系数较小,钢纤维对提升喷射混凝土抗盐冻性能的作用甚微,模筑混凝土氯离子含量及扩散系数明显大于喷射混凝土。盐冻损伤喷射混凝土氯离子含量分布符合Fick第二定律。以盐冻损伤喷射混凝土相对动弹性模量损失率为指标,建立了考虑环境温湿度、喷射混凝土配合比参数及盐冻损伤的氯离子扩散模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
王斌
张凯峰
李恒
关键词:  隧道结构  喷射混凝土衬砌  盐冻损伤  氯离子扩散模型  相对动弹性模量    
Abstract: Chloride diffusion of shotcrete lining structure about highway tunnel in marine environment after salt-frost degradation (3.5wt% NaCl solution) were studied by using solid-liquid extraction and potential method. Meanwhile, the influence factors of chloride ion diffusion on salt-frost degradation, mixture parameter and formed method were analyzed. Then, the chloride ion diffusion model was established based on Fick second law. Salt-frost degradation accelerated chloride ion diffused into shotcrete. Shotcrete with small water-binder ratio and low fly ash replacement had lower chloride content and diffusion coefficient. Steel fiber had little effect on improving salt-frost resistance of shotcrete. Chloride content and ion diffusion coefficient of normal concrete were significantly higher than those of shotcrete. Finally, the chloride diffusion model of shotcrete was established, which considering the environmental temperature and capillary pores humidity, salt-frost damage degree and shotcrete mixture parameters.
Key words:  tunnel engineering    shotcrete lining    salt-frost degradation    chloride diffusion model    relative dynamic elasticity modulus
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TU528.44  
基金资助: 国家自然科学基金(51908440)
通讯作者:  wangjiabin@xatu.edu.cn   
作者简介:  王家滨,西安工业大学建筑工程学院,讲师。2017年1月毕业于西安建筑科技大学,结构工程专业,工学博士学位。同年加入西安工业大学建筑工程学院工作至今,主要从事喷射混凝土及再生骨料混凝土耐久性研究。发表学术论文20余篇,SCI及EI检索10余篇。
引用本文:    
王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
WANG Jiabin, WANG Bin, ZHANG Kaifeng, LI Heng. Chloride Diffusion and Its Model of Shotcrete Lining Structure with Salt-frost Degradation. Materials Reports, 2020, 34(16): 16055-16061.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060102  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16055
1 Alum T. Sprayed concrete lined tunnel, Taylor & Francis, USA, 2014.
2 Tomas F, Garshol K F, Tomisawa N. Tunneling and Underground Space Technology, 2001,16,295.
3 Usman M, Galler R. International Journal of Rock Mechanics & Mining Sciences, 2013, 64(6),84.
4 Choi P, Yeon J H, Yun K K. Cement & Concrete Composites, 2016, 70,69.
5 Wang J, Niu D, Ding S, et al. Construction & Building Materials, 2015, 78,203.
6 Jin Z Q, Zhao T J, Zhang P, et al. Journal of the Chinese Ceramic Society, 2013, 41(2), 205(in Chinese).
金祖权, 赵铁军, 张鹏, 等. 硅酸盐学报, 2013, 41(2), 205.
7 Lei Y, Zheng Z P. Engineering Mechanics, 2016, 33(5), 1(in Chinese).
雷鹰, 郑翥鹏. 工程力学, 2016, 33(5), 1.
8 Tan B H. Study on chloride ion transport mechanism of concrete in submarine tunnel under the interaction of multi-salts and multi-fields. Master’s Thesis, East Chine University of Technology, China, 2018(in Chinese).
谭保华. 多盐多场耦合作用下海底隧道混凝土氯离子传输机制研究. 硕士学位论文,华南理工大学, 2018.
9 Jin Z Q, Zhao T J, Hou B R, et al. Journal of Civil, Architectural and Environmental Engineering, 2009, 31(6), 86(in Chinese).
金祖权, 赵铁军, 侯保荣, 等. 土木建筑与环境工程, 2009, 31(6), 86.
10 Wang C F, Niu D T. Industrial Construction, 2012, 42(1), 137(in Chinese).
王晨飞, 牛荻涛.工业建筑, 2012, 42(1),137.
11 Guo Y C, Chen Z H, Shen A Q, et al. Journal of Jiangsu University (Natural Science Edition), 2019, 40(1), 102(in Chinese).
郭寅川, 陈志晖, 申爱琴, 等. 江苏大学学报(自然科学版), 2019, 40(1), 102.
12 Aneta N. Procedia Engineering, 2013, 57, 823.
13 Vitoldas V, Evaldas Š, Danute V, et al. Construction & Building Mate-rials, 2016, 126, 26.
14 Gintautas S, Dzigita N, Giedrius G, et al. Procedia Engineering, 2013, 57, 1045.
15 Zhang J K, Yuan J, Liu W B, et al. Journal of Tongji University (Na-tural Science), 2018, 46(1),53(in Chinese).
张家科, 袁捷, 刘文博,等. 同济大学学报(自然科学版), 2018, 46(1), 53.
16 Yuan J, Wu Y, Zhang J. Construction & Building Materials, 2018, 168, 975.
17 Liu Z, Hansen W. Construction & Building Materials, 2016, 102,478.
18 Liu Z, Hansen W. Construction & Building Materials, 2015, 98,204.
19 Liu J L, Jia Y M, Wang J W, et al. Journal of Harbin Engineering University, 2018, 39(1), 41(in Chinese).
刘金亮, 贾艳敏, 王佳伟, 等. 哈尔滨工程大学学报, 2018, 39(10), 41.
20 Ferreira M, Kuosa H, Leivo M, et al. Nuclear Engineering and Design, 2017, 323, 228.
21 Oğuzhan Ç, Schlangen E. Cement & Concrete Research, 2008, 38(1), 27.
22 Wang J B, Niu D T. Bulletin of the Chinese Ceramic Society, 2018, 37(7),18(in Chinese).
王家滨, 牛荻涛. 硅酸盐通报, 2018, 37(7),18.
23 Page C, Short N, Tarras A. Cement & Concrete Research, 1981, 11(3),395.
24 Bažant Z, Najjar L. Materials and Structures, 1972, 5(1),3.
25 Thomas M, Bamforth P. Cement & Concrete Research, 1999, 29(4),487.
26 Mu R. Durability and service life prediction of concrete subjected to the combined action of freezing-thawing sustained external flexural stress and salt solution. Ph.D. Thesis, Southeast University, China,2000(in Chinese).
慕儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测. 博士学位论文, 东南大学, 2000.
[1] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed