Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5023-5031    https://doi.org/10.11896/cldb.19020058
  材料与可持续发展(三)——环境友好材料与修复材料 |
层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展
肖江1, 周书葵1, 刘星2, 储陆平1, 张建1, 李智东1, 田林玉1, 李嘉丽1
1 南华大学土木工程学院,衡阳 421000;
2 长安大学建筑工程学院,西安 710000
Research Progress on Removal of Heavy Metal Ions from Water by Layered Double Hydroxides and Its Composites
XIAO Jiang1, ZHOU Shukui1, LIU Xing2, CHU Luping1, ZHANG Jian1, LI Zhidong1, TIAN Linyu1, LI Jiali1
1 School of Civil Engineering, University of South China, Hengyang 421000, China;
2 School of Civil Engineering and Architecture, Chang'an University, Xi'an 710000, China
下载:  全 文 ( PDF ) ( 5425KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着现代工业的飞速发展,工业废水中的重金属离子对人类生存和健康已造成严重的威胁,因此,如何有效去除重金属是当前环境治理领域中需要解决的重要问题。层状双金属氢氧化物(LDHs)作为一种二维层状化合物,具备来源广泛、化学性质稳定、合成成本低、无毒性等优势,被广泛应用于吸附材料、催化剂和药物学等领域。大量实验证明,层状金属氢氧化物能作为吸附剂去除水中的重金属离子,且吸附效果显著。
  但单一LDHs因官能团较少、耐酸碱性较差、重复使用率低、易聚集等缺点难以在环境修复领域的实际应用中进一步推广,因此,如何改善其吸附性能,即如何以层状双金属氢氧化物为基体材料来构筑功能性的层状金属氢氧化物材料,成为近期环境修复领域研究的热点之一。目前,研究人员试图以煅烧、插层、表面修饰和复合材料等方法对LDHs进行表面改性,以达到提高LDHs材料的层间距离、比表面积和表面官能团等目的,继而增加其与重金属离子之间的作用位点,提升吸附性能。
  大量研究表明,采用煅烧法能获得大比表面积和丰富含氧功能团的LDHs;如将苯二甲酸(TAL)和均苯四羧酸(PAL)等应用到插层改性能获得层间距离更大的LDHs,或者将甘油小分子应用于表面修饰改性LDHs,可以增加LDHs材料表面官能团的数量。以上改性方法均能提高LDHs的吸附性能,但改性后的LDHs材料仍存在回收效果差、重复利用率低等问题。因此,研究者制备了以Fe3O4为主的磁性LDHs复合材料,该制备方法既满足了高吸附性能的要求,也极大地提高了其重复利用效率;不仅突破了回收利用率低的瓶颈,还为LDHs材料在实际应用中的推广奠定了基础。
  基于水环境修复角度,本文首先论述了层状双金属氢氧化物的制备,及以层状双金属氢氧化物为基体材料的常用改性方法和可能的作用机理,并进一步论述了其在环境领域中水处理方面的最新应用。其次,本文还分析了环境修复过程中影响层状双金属氢氧化物应用效果的各种因素。最后,本文在上述基础上对如何利用层状金属氢氧化物复合材料高效地从水环境中去除重金属离子进行了深刻的思考,进而对层状双金属氢氧化物(LDHs)在废水处理中的应用前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖江
周书葵
刘星
储陆平
张建
李智东
田林玉
李嘉丽
关键词:  层状双金属氢氧化物  功能化  重金属  吸附机理  影响因素    
Abstract: With the rapid development of modern industry, heavy metal ions in industrial wastewater have caused serious threats to human survival and health. Therefore, how to effectively remove heavy metals is a top priority in the current environmental governance field. As a two-dimensional layered compound, layered double hydroxides (LDHs) have many advantages such as wide source, stable chemical properties, low synthesis cost and no toxicity. They are widely used in adsorption materials, catalysts and pharmacology. A large number of experiments have proved that the layered metal hydroxide can be used as an adsorbent to remove heavy metal ions in water, and the adsorption effect is remarkable.
  However, single LDHs is difficult to be further promoted in practical applications in the field of environmental remediation due to fewer functional groups, poor acid and alkali resistance, low reusability, and easy aggregation. Therefore, how to improve their adsorption performance, that is, how to use metal hydroxide as a matrix material to construct a functional layered metal hydroxide material, which has become one of the hotpots in the field of environmental restoration in the future. At present, researchers have attempted to modify the surface of LDHs by calcination, intercalation, surface modification and composite materials, so as to increase the interlayer distance, specific surface area and surface functional groups of LDHs materials, and then increase the interaction sites between them and heavy metal ions and the adsorption performance is improved.
  A large number of studies have shown that calcination can obtain large specific surface area and rich LDHs with oxygen-containing functional groups. For example, the application of phthalic acid (TAL) and pyromellitic acid (PAL) to intercalation modification can obtain larger interlayer distance. Large LDHs, or the application of small glycerol molecules to surface-modified LDHs, can increase the number of surface functional groups in LDHs. The above modification methods can improve the adsorption performance of LDHs, but the modified LDHs materials still have problems such as poor recovery effect and low recycling efficiency. Therefore, the researchers have prepared a magnetic LDHs composite mate-rial mainly composed of Fe3O4. This preparation method not only satisfies the requirements of high adsorption performance, but also greatly improves the recycling efficiency, which not only breaks the bottleneck of low recycling efficiency, but also lays the foundation for the promotion of LDHs materials in practical applications.
  Based on the perspective of water environment restoration, this paper first discusses the preparation of layered double hydroxides, the common modification methods and possible mechanism of action of layered double hydroxides as matrix materials, and further discusses their application in the environmental field. Secondly, this paper analyzes various factors affecting the application effect of layered double hydroxide in environmental remediation process. Finally, based on the above, this paper deeply considers how to remove heavy metal ions from water environment by la-yered metal hydroxide composites, and the application prospects of layered double hydroxides (LDHs) in wastewater treatment are predicted.
Key words:  layered double hydroxides    functionalization    heavy metals    adsorption mechanism    influencing factors
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TQ424  
基金资助: 国家自然科学基金(51174117);湖南省教育厅科研平台项目(15K106);湖南省创新平台开放基金(17K078)
通讯作者:  zhoushukui@usc.edu.cn   
作者简介:  肖江,2017年6月毕业于武汉纺织大学外经贸学院,获得理学学士学位。现为南华大学土木工程学院硕士研究生,在周书葵教授的指导下进行研究。目前主要研究领域为重金属污染土壤的原位修复技术;周书葵,教授,硕士研究生导师,衡阳市领军人才。湖南省给排水学术委员会委员,衡阳市环保协会副理事,铀矿冶污染治理技术国防科技创新团队主要成员。主要从事水处理理论与技术、地下水放射性污染防治与评价、污染控制与资源化技术方面的研究工作。近年来主持国家自然科学基金项目“铀尾矿库放射性核素对库区地下水环境污染机理及其风险评价方法”等科研项目4项;主要参与完成国家省部级科研项目4项,在国内外专业刊物上发表论文50余篇,出版专著1部,教材4部,获国家专利2项,获“湖南普通高等学校先进科技工作者”称号。
引用本文:    
肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
XIAO Jiang, ZHOU Shukui, LIU Xing, CHU Luping, ZHANG Jian, LI Zhidong, TIAN Linyu, LI Jiali. Research Progress on Removal of Heavy Metal Ions from Water by Layered Double Hydroxides and Its Composites. Materials Reports, 2020, 34(5): 5023-5031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020058  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5023
1 Hu J, Yang S K, Wang X K. Journal of Chemical Technology & Biotechnology Biotechnology, 2012, 87(5), 673.
2 Ren X M, Yang S T, Shao D D, et al. Separation Science & Technology, 2013, 48(8), 1211.
3 Liu Z J, Lei C, Zhang Z C, et al. Journal of Molecular Liquids, 2013, 179(39), 46.
4 Gauthier P T, Norwood W P, Prepas E E, et al. Aquatic Toxicology, 2014, 154(5), 253.
5 Fu F L, Wang Q. Journal of Environmental Management, 2011, 92(3), 407.
6 Alyüz B, Veli S. Journal of Hazardous Materials, 2009, 167(1), 482.
7 Meunier N, Drogui P, Montané C, et al. Journal of Hazardous Mate-rials, 2006, 137(1), 581.
8 Mirbagheri S A, Hosseini S N. Desalination, 2005, 171(1), 85.
9 Ding C C, Cheng W C, Sun Y B, et al. Geochimica Et Cosmochimica Acta, 2015, 165, 86.
10 Gao J, Sun S P, Zhu W P, et al. Water Research, 2014, 63(7), 252.
11 Zubair M, Daud M, McKay G, et al. Applied Clay Science, 2017, 143, 279.
12 Theiss F L, Couperthwaite S J, Ayoko G A, et al. Journal of Colloid & Interface Science, 2014, 417(417), 356.
13 Stefaniuk M, Oleszczuk P, Yong S O. Chemical Engineering Journal, 2016, 287, 618.
14 Liu Y J, Ren D Z, Song Z Y, et al. Environmental Science & Pollution Research, 2018, 25(14), 13645.
15 Chen C L, Yang X, Wei J, et al. Journal of Colloid & Interface Science, 2013, 393(2), 249.
16 Arshadi M, Soleymanzadeh M, Salvacion J W L, et al. Journal of Colloid & Interface Science, 2014, 426(27), 241.
17 Li Y H, Ding J, Zhao K L, et al. Carbon, 2003, 41(14), 2787.
18 Du Y, Wang J, Zou Y D, et al. Science Bulletin, 2017, 62(13), 913.
19 Wang J, Wang X X, Tan L Q, et al. Chemical Engineering Journal, 2016, 297, 106.
20 Tang S, Lee H K. Analytical Chemistry, 2013, 85(15), 7426.
21 Taylor H F W. Mineralogical Magazine, 1969, 37(287), 338.
22 Rives V. Materials Chemistry & Physics, 2002, 75(1), 19.
23 Birgül A, Tasdemir Y. The Scientific World Journal, 2012, 2012(2), 798020.
24 Zhu K R, Gao Y, Tan X L, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(8),4361.
25 Zhao J W, Chen J L, Xu S M, et al. Advanced Functional Materials, 2014, 24(20), 2921.
26 Rojas R, Bruna F, Pauli C P D, et al. Journal of Colloid & Interface Science, 2011, 359(1), 136.
27 Zou Y D, Wang X X, Wu F, et al. ACS Sustainable Chemistry & Engineering, 2016, 5(1), 1173.
28 Ma S L, Chen Q M, Li H, et al. Journal of Materials Chemistry A, 2014, 2(26), 10280.
29 Zou Y D, Yang L, Wang X X, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(4), 3583.
30 Huang Q Q, Yan C, Yu H Q, et al. Chemical Engineering Journal, 2018, 341, 1.
31 Mishra G, Dash B, Pandey S. Applied Clay Science, 2018, 153, 172.
32 Wang W W, Zhou J B, Achari G, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 457(1), 33.
33 Chen H, Chen Z, Zhao G, et al. Journal of Hazardous Materials, 2017, 347, 67.
34 Qu J, Zhang Q W, Li X W, et al. Applied Clay Science, 2016, 119, 185.
35 Mantilla A, Tzompantzi F, Fernández J L, et al. Catalysis Today, 2010, 150(3), 353.
36 Zhang F R, Du N, Li H P, et al. Solid State Sciences, 2014, 32(6), 41.
37 Olfs H W, Torres-Dorante L O, Eckelt R, et al. Applied Clay Science, 2009, 43(3), 459.
38 Costantino U, Marmottini F, Nocchetti M, et al. Berichteder Deutschen Chemischen Gesellschaft, 1998, 10(10), 1439.
39 Li K W, Kumada N, Yonesaki Y, et al. Materials Chemistry & Physics, 2010, 121(1), 223.
40 Kloprogge J T, Hickey L, Frost R L. Journal of Solid State Chemistry, 2004, 177(11), 4047.
41 Tongamp W, Zhang Q, Saito F. Journal of Materials Science, 2007, 42, 9210.
42 Elmoubarki R, Mahjoubi F Z, Elhalil A, et al. Journal of Materials Research & Technology, 2017, 6(3), 271.
43 Pérez M R, Pavlovic I, Barriga C, et al. Applied Clay Science, 2006, 32(3-4), 245.
44 Figueras F. Topics in Catalysis, 2004, 29(3-4), 189.
45 Yuan X Y, Wang Y F, Wang J, et al. Chemical Engineering Journal, 2013, 221(2), 204.
46 Yu S, Wang X, Chen Z, et al. Journal of Hazardous Materials, 2017, 321, 111.
47 Yang D X, Wang X X, Wang N, et al. Journal of Cleaner Production, 2018, 172, 2033.
48 Zou Y D, Wang P Y, Wen Y, et al. Chemical Engineering Journal, 2017, 330, 573.
49 Zhang H, Huang F, Liu D L, et al. Chinese Chemical Letters, 2015, 26(9), 1137.
50 Ho L S, Masato T, Yoshio T, et al. Chemosphere, 2018, 211, 903.
51 Yang F C, Sun S Q, Chen X Q, et al. Applied Clay Science, 2016, 123, 134.
52 Lu Y, Jiang B, Fang L, et al. Chemosphere, 2016, 152, 415.
53 Yao W, Wang X X, Liang Y, et al. Chemical Engineering Journal, 2018, 332, 775.
54 Rahmanian O, Amini S, Dinari M. Journal of Molecular Liquids, 2018, 256, 9.
55 Rahmanian O, Dinari M, Abdolmaleki M K. Applied Surface Science, 2018, 428, 272.
56 Yu J N, Zhu Z L, Hua Z, et al. Environmental Science & Pollution Research, 2018, 25(24), 24293.
57 Tao W, Cui L, Wang C, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 538, 443.
58 Lv Z, Yang S, Zhu H, et al. Applied Surface Science, 2018, 448, 599.
59 Zhang X F, Ji L Y, Wang J, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 414(46), 220.
60 Wang X X, Yu S Q, Wu Y H, et al. Chemical Engineering Journal, 2018, 342, 321.
61 Zhang B, Luan L Y, Gao R T, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017, 520, 399.
62 Duan S B, Ma W, Cheng Z H, et al. Colloids & Surfaces A Physicoche-mical & Engineering Aspects, 2016, 490(1), 250.
63 Yue X Y, Liu W Z, Chen Z L, et al. Journal of Environmental Sciences, 2016, 53(3), 16.
64 Huang Q, Zhao J, Liu M Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 92.
65 Xie Y Y, Yuan X Z, Wu Z B, et al. Journal of Colloid and Interface Science, 2018, 536, 440.
66 Tsung L S, Nguyen T H, Ping C H, et al. Applied Clay Science, 2018, 162, 443.
67 Deng L, Shi Z, Wang L, et al. Journal of Physics & Chemistry of Solids, 2017, 104, 79.
68 Liang X F, Hou W G, Xu Y M, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2010, 366(1), 50.
69 Daud M, Kamal M S, Shehzad F, et al. Carbon, 2016, 104, 241.
70 Hu Z L, Cai L M, Liang J M, et al. Journal of Cleaner Production, 2019, 209, 1216.
71 Asiabi H, Yamini Y, Shamsayei M. Journal of Hazardous Materials, 2017, 339, 239.
72 Wang X X, Fan Q H, Yu S J, et al. Chemical Engineering Journal, 2016, 287, 448.
73 Yin L, Wang P Y, Wen T, et al. Environmental Pollution, 2017, 226, 125.
[1] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[2] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[3] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[4] 蒋芳, 雷婷, 李声剑, 任子旋, 王利莲, 刘萌, 汤立红, 王世雄. 聚合物吸附剂的制备及在水体重金属污染净化应用中的研究进展[J]. 材料导报, 2019, 33(Z2): 526-532.
[5] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[6] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[7] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[8] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[9] 刘帅, 马兴元. 封闭型无溶剂聚氨酯的研究进展[J]. 材料导报, 2019, 33(23): 3892-3899.
[10] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[11] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[12] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[13] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[14] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[15] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed