Abstract: Diatomite is an inorganic nonmetallic mineral material. Due to unique ordered pore structures, applications of diatomite have been realized in chemical engineering and building materials industries. The application of diatomite was usually limited by its specific surface area (about 18—28 m2/g). Through the functionalization, diatomite materials could be vested with a certain property, thus improving the performance in environment treatment and advancing applications in the field of energy and bioengineering. Therefore, functionalization of diatomite has become a research focus. In recent years, researches on functionalization of diatomite mainly focus on three areas: noncovalent functionalization, covalent functionalization and chemical conversion of diatomite. Normally, noncovalent functionalization indicate that using nano metal oxides and metal oxygenates to modify diatomite and the functionalized diatomite can be used in the field of energy, water treatment and sensors. Covalent functionalization of diatomite refers to modifying diatomite with functional monomer through the connection of Si-O covalent bond based on Si-O tetrahedron and Si-OH of diatomite. Functional monomers are classified into silicates and silane coupling agents. Silane coupling agents connect to diatomite through Si-OH, and it could also be used to connect other functional groups to obtain excellent properties. Covalent functionalized diatomite is commonly used in the fields of energy, sensor and water treatment. The chemical conversion of diatomite to silicon source is the other functionalization met-hod. Silicon keeps the morphology of diatomite and can be used in the field of energy and bioengineering. Functionalization of diatomite is the key to realize the application of diatomite materials in emerging fields. Therefore, researches on diatomite functionalization would advance the application of diatomite and promote the development of emerging areas. Here, the progress of diatomite functionalization at home and abroad in recent years are summarized. The functionalization routes and their applications are introduced in detail in order to provide reference for advanced diatomite functionalization routes and their applications.
作者简介: 王学凯,2018年6月毕业于北京工业大学,获得工学硕士学位。现为北京工业大学材料科学与工程学院博士研究生,在王金淑教授的指导下进行研究。目前主要研究方向为功能化硅藻土的制备及在污水处理领域的应用;王金淑,工学博士,北京工业大学教授,国家杰出青年基金获得者、教育部长江学者特聘教授,获国务院政府特殊津贴,入选国家级百千万人才工程计划。Tungsten副主编,International Journal of Nonferrous Metallurgy、Applied Microscopy、《粉末冶金技术》等编委。长期从事无机材料制备、性能分析及技术应用研究。获得国家技术发明二等奖一项,省部级一等奖两项,省部级技术发明二等奖两项,中国青年科技奖、茅以升北京青年科技奖、第八届霍英东青年教师基金获得者。授权美国发明专利3项,国家发明专利70余项,出版专著一部,在国内外学术期刊上发表SCI收录论文200余篇。主持国家863、国家自然科学基金重点基金、国家自然科学基金杰出青年基金等8项,省部级项目16项。
引用本文:
王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
WANG Xuekai, WANG Jinshu, DU Yucheng, WU Junshu, TENG Weili, CHE Haibing, JIN Cuixin. Functionalization of Diatomite and Its Applications. Materials Reports, 2020, 34(3): 3017-3027.
1 Cicco S R, Vona D, Leone G , et al. MRS Communications, 2017, 7(2), 1. 2 Bozarth A, Maier U G, Zauner S. Applied Microbiology and Biotechnology, 2009, 82(2), 195. 3 Liu J, Zhao D F.Environmental Science and Management, 2009, 34(5), 104 (in Chinese). 刘洁, 赵东风, 环境科学与管理,2009, 34(5), 104. 4 Wen Y M, Teng H H. Advanced Materials Research, 2014, 1010-1012, 523. 5 Cotes-Palomino M T, Martínez-García C, Eliche-Quesada D, et al. Key Engineering Materials, 2016, 663, 94. 6 Slowing I I, Trewyn B G, Giri S, et al.Advanced Functional Materials, 2007, 17(8), 1225. 7 Terracciano M, Shahbazi M A, Correia A, et al. Nanoscale, 2015, 7(47), 20063. 8 Lo Y H, Yang C Y, Chang H K, et al. Scientific Reports, 2017, 7(1), 1. 9 Larouci M, Safa M, Meddah B, et al.Journal of Food Science and Technology, 2015, 52(3), 1677. 10 He M, Wu C, Wei J, et al.Industrial Water Treatment, 2005, 25(5), 25. 11 Li C, Zhang X Y, Liu J L, et al.Advanced Materials Research, 2011, 356-360, 2153. 12 Wu C D, Zhang J Y, Wang L, et al.Water Science & Technology, 2013, 67(7), 1620. 13 Mukerabigwi J F, Wang Q, Ma X, et al.Journal of Coatings Technology & Research, 2015, 12(6), 1085. 14 Shukry N A M, Hassan N A, Abdullah M E, et al.International Journal of Pavement Engineering, 2018(6), 1. 15 Wang B, Zhang G, Leng X, et al. Journal of Hazardous Materials, 2015, 285, 212. 16 Shang W, Qian X, Yu D.Journal of Applied Polymer Science, 2018, 135(20), 46275. 17 Zahalkova J, Rovnanikova P.Materials Science Forum, 2016, 865, 22. 18 Ivanov K S, Radaev S S, Selezneva O I. Glass & Ceramics, 2014, 71(5-6), 157. 19 Losic D, Mitchell J G, Voelcker N H.Advanced Materials, 2010, 21(29), 2947. 20 Losic D, Pillar R J, Dilger T, et al.Journal of Porous Materials, 2007, 14(1), 61. 21 Ghouti M A A, Degs Y S A. Chemical Engineering Journal, 2011, 173, 115. 22 Guo D S, Wang S W, Hu J, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2009, 339(1-3), 159. 23 Metin Gürü, Venedik D, Murathan A.Journal of Hazardous Materials, 2008, 160(2-3), 318. 24 Dessalew G, Beyene A, Nebiyu A, et al.Journal of Cleaner Production, 2017, 157, 22. 25 Zhang X, Yang H L, Li S, et al.Journal of Materials Science & Technology, 2018, 34, 1044. 26 Han L, Li F L, Deng X G, et al.Journal of the European Ceramic Society, 2017, 37, 2717. 27 He Y, Jiang B, Jiang Y, et al.Journal of Hazardous Materials, 2017, 344, 230. 28 Xia Y, Jiang X, Jing Z, et al.Applied Surface Science, 2017, 396, 1760. 29 Chen Y, Liu K R.Advanced Powder Technology, 2017, 28, 2225. 30 Shi M, Li J, Cai J, et al.Journal of Nanoscience and Nanotechnology, 2017, 17(9), 6686. 31 Sun Z, Yao G, Liu M, et al.Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 501. 32 Du Y C, Yan J, Meng Q, et al.Materials Chemistry and Physics, 2012, 133(2-3), 907. 33 Du Y C, Fan H G, Wang L P, et al. Journal of Materials Chemistry A, 2013, 1, 7729. 34 Du Y C, Wang L P, Wang J S, et al.Journal of Environmental Sciences, 2015, 29(3), 71. 35 Du Y C, Zheng G W, Wang J S, et al.Microporous & Mesoporous Mate-rials,2014, 200, 27. 36 Du Y C, Wang X K, Wu J S, et al.Particuology, 2018, 40, 123. 37 Du Y C, Wang X K, Wu J S, et al.Microporous & Mesoporous Materials, 2018, 271, 83. 38 Zheng G W, Du Y C, Hou R Q, et al.Chinese Journal of Inorganic Chemistry, 2015, 31(5), 930 (in Chinese). 郑广伟, 杜玉成, 侯瑞琴, 等, 无机化学学报, 2015, 31(5), 930. 39 Wang T N, Yang Y F, Wang J S, et al.RSC Advances, 2019, 9(7), 3816. 40 Ding C, Cheng W, Sun Y, et al.Geochimica et Cosmochimica Acta, 2015, 165, 86. 41 Crane R A, Dickinson M, Scott T B.Chemical Engineering Journal, 2015, 262(3), 319. 42 Sheng G D, Shao X Y, Li J F, et al.Journal of Physics Chemistry A, 2014, 118, 2952. 43 Liu Z T, Gu C G, Ye M, et al.Journal of Hazardous Materials, 2015, 298, 328. 44 Xu J L, Li Y L, Jing C, et al.Journal of Radio analytical & Nuclear Chemistry, 2014, 299(1), 329. 45 Sun X, Yan Y B, Li J S, et al.Journal of Hazardous Materials, 2014, 266, 26. 46 Sheng G D, Yang P J, Tang Y N, et al.Applied Catalysis B: Environmental, 2016, 193, 189. 47 Liang L P, Yang W J, Guan X H, et al.Water Research,2013, 47(15), 5846. 48 Toster J, Iyer K S, Xiang W C, et al.Nanoscale, 2013, 5(3), 873. 49 Selvaraj V, Muthukumar A, Nagamony P, et al. Environmental Science & Pollution Research International, 2017, 25(21), 1. 50 Chao J T, Biggs M J, Pandit A S.Expert Opinion on Drug Delivery, 2014, 11(11), 1687. 51 Uthappa U T, Brahmkhatri V, Sriram G, et al.Journal of Controlled Release,2018, 281, 70. 52 Onesto V, Villani M, Coluccio M L, et al. Nanoscale Research Letters, 2018, 13(1), 94. 53 Lu S H, Hu J S, Chen C L, et al. Separation & Purification Technology, 2017, 174, 425. 54 Fu Y, Xu X X, Huang Y, et al.Royal Society Open Science, 2017, 4(12), 170829. 55 Sun L M, Wang J S, Wu J S, et al. Journal of Materials Science,2019, 54, 6882. 56 Caner N, Sar1 A, Tüzen M. Industrial & Engineering Chemistry Research,2015, 54, 7524. 57 Fan L, Luo C, Sun M, et al. Colloids and Surfaces B: Biointerfaces, 2013, 103, 523. 58 Etemadi M, Samadi S, Yazd S S, et al. International Journal of Biological Macromolecules, 2013, 95, 725. 59 Reddy D, Lee S M. Advances in Colloid and Interface Science,2013, 201, 68. 60 Fu Y, Huang Y, Hu J S, et al.Water Science & Technology, 2018, 77(5), 1363. 61 Bayramoglu G, Akbulut A, Arica M Y.Journal of Hazardous Materials, 2013, 244-245(2), 528. 62 Gale D K, Gutu T, Jiao J, et al.Advanced Functional Materials, 2010, 19(6), 438. 63 Qin T, Gutu T, Jiao J, et al.Journal of Nanoscience & Nanotechnology, 2008, 8(5), 2392. 64 Zhen L, Ford N, Gale D K, et al.Biosensors and Bioelectronics, 2016, 79, 742. 65 Goldman E R, Goldman E R, Goldman E R, et al.Journal of Environmental Monitoring,2003, 5(3), 380. 66 Goldman E R, Medintz I L, Whitley J L, et al. Journal of the American Chemical Society, 2005, 127(18), 6744. 67 Ruggiero I, Terracciano M, Martucci N M, et al. Nanoscale Research Letters, 2014, 9(1), 1. 68 Terracciano M, Shahbazi M A, Correia A, et al.Nanoscale, 2015, 7(47), 20063. 69 Sinn A M, Simovic S, Yu Y, et al.Powder Technology,2012, 223(6), 52. 70 Cicco S R, Vona D, Giglio E D, et al. Chempluschem, 2015, 80(7), 1104. 71 Zhang Y X, Huang M, Li F, et al. Journal of Power Sources,2014, 246, 449. 72 Zhang Y X, Li F, Huang M, et al. Matters Letters, 2014, 120, 263. 73 Losic D, Triani G, Evans P J, et al.Journal of Materials Chemistry, 2006, 16(41), 4029. 74 Losic D, Yu Y, Aw M S, et al. Chemical Communications, 2010, 46(34), 6323. 75 Le Q J, Wang T, Tran D N, et al. Journal of Materials Chemistry A, 2017, 5, 10856. 76 Chandrasekaran S, Sweetman M J, Kant K, et al. Chemical Communications, 2014, 50(72), 10441. 77 Baniasadi E, Dincer I, Naterer G F.Applied Catalysis A: General, 2013, 455(2), 25. 78 Chen X P, Shangguan W F. Frontiers in Energy, 2013, 7(1),111. 79 Campbell B, Ionescu R, Tolchin M, et al. Scientific Reports, 2016, 6, 33050. 80 Rea I, Terracciano M, Chandrasekaran S, et al. Nanoscale Research Letters, 2016, 11(1),405. 81 Politi J, Rea I, Dardano P, et al. Sensors B Chem, 2015, 220, 705. 82 Sgammato R, Desiderio D, Lamberti A, et al. Electrophoresis, 2015, 36, 3101.