Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3017-3027    https://doi.org/10.11896/cldb.19070130
  材料与可持续发展(三)—环境友好材料与环境修复材料 |
硅藻土功能化及其应用
王学凯,王金淑,杜玉成,吴俊书,腾威利,车海冰,靳翠鑫
北京工业大学材料科学与工程学院,先进功能材料教育部重点实验室,北京100124
Functionalization of Diatomite and Its Applications
WANG Xuekai,WANG Jinshu,DU Yucheng,WU Junshu,TENG Weili,CHE Haibing,JIN Cuixin
Key Laboratory of Advanced Functional Materials,School of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China
下载:  全 文 ( PDF ) ( 37568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅藻土是一种天然无机非金属矿物材料,具有独特的多级孔道结构,已在部分化工、建材领域获得实际应用。但硅藻土本征比表面积较小(18~28 m2/g),导致其应用受限。通过对硅藻土进行功能化改性,可以赋予硅藻土材料特定的理化性质,进而改善其环境治理效果,同时使其有望应用于能源及生物工程等领域。因此,对硅藻土进行功能化改性处理已成为目前人们研究的热点。近年来,硅藻土功能化的研究主要集中于非共价修饰硅藻土、共价修饰硅藻土和对硅藻土的化学转化三方面。非共价修饰硅藻土多为纳米金属氧化物、金属含氧酸盐等修饰硅藻土,合成的硅藻土复合材料主要应用于环境治理和能源领域。共价修饰硅藻土主要是基于硅藻土内硅氧四面体和表面数量众多的硅羟基通过Si-O共价键连接表面功能单体。而功能单体又分为硅酸盐和硅烷偶联剂两种。其中,硅烷偶联剂一端接枝于硅藻土表面硅羟基,另一端可继续接枝其他有机官能团,极大地丰富了硅藻土复合材料表面官能团的种类,使其具有更加优异的性能。共价修饰硅藻土在能源、传感器、环境治理领域均有应用。硅藻土的化学转化则以硅藻土为硅源,将其转化为具有硅藻土三维结构的单质Si,应用于能源、生物工程领域。硅藻土功能化是实现硅藻土在新兴领域应用的关键,基于硅藻土功能化修饰的研究在提高硅藻土应用水平的同时,可以促进新兴领域的发展。本文归纳了近年来国内外硅藻土功能化的研究进展,详细介绍了三种功能化方法,并分析了相应功能化硅藻土在不同领域的应用情况,以期为硅藻土功能化方法的研究及新应用领域的拓展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王学凯
王金淑
杜玉成
吴俊书
腾威利
车海冰
靳翠鑫
关键词:  硅藻土  功能化  非共价修饰  共价修饰  化学转化    
Abstract: Diatomite is an inorganic nonmetallic mineral material. Due to unique ordered pore structures, applications of diatomite have been realized in chemical engineering and building materials industries. The application of diatomite was usually limited by its specific surface area (about 18—28 m2/g). Through the functionalization, diatomite materials could be vested with a certain property, thus improving the performance in environment treatment and advancing applications in the field of energy and bioengineering. Therefore, functionalization of diatomite has become a research focus.
In recent years, researches on functionalization of diatomite mainly focus on three areas: noncovalent functionalization, covalent functionalization and chemical conversion of diatomite. Normally, noncovalent functionalization indicate that using nano metal oxides and metal oxygenates to modify diatomite and the functionalized diatomite can be used in the field of energy, water treatment and sensors. Covalent functionalization of diatomite refers to modifying diatomite with functional monomer through the connection of Si-O covalent bond based on Si-O tetrahedron and Si-OH of diatomite. Functional monomers are classified into silicates and silane coupling agents. Silane coupling agents connect to diatomite through Si-OH, and it could also be used to connect other functional groups to obtain excellent properties. Covalent functionalized diatomite is commonly used in the fields of energy, sensor and water treatment. The chemical conversion of diatomite to silicon source is the other functionalization met-hod. Silicon keeps the morphology of diatomite and can be used in the field of energy and bioengineering.
Functionalization of diatomite is the key to realize the application of diatomite materials in emerging fields. Therefore, researches on diatomite functionalization would advance the application of diatomite and promote the development of emerging areas. Here, the progress of diatomite functionalization at home and abroad in recent years are summarized. The functionalization routes and their applications are introduced in detail in order to provide reference for advanced diatomite functionalization routes and their applications.
Key words:  diatomite    functionalization    noncovalent functionalization    covalent functionalization    chemical conversion
               出版日期:  2020-02-10      发布日期:  2020-01-03
ZTFLH:  TB34  
基金资助: 国家重点研发计划项目(2017YFB0310804);国家自然科学基金面上项目(51974011);宁夏回族自治区重点研发计划(2019BFG02032)
通讯作者:  wangjsh@bjut.edu.cn   
作者简介:  王学凯,2018年6月毕业于北京工业大学,获得工学硕士学位。现为北京工业大学材料科学与工程学院博士研究生,在王金淑教授的指导下进行研究。目前主要研究方向为功能化硅藻土的制备及在污水处理领域的应用;王金淑,工学博士,北京工业大学教授,国家杰出青年基金获得者、教育部长江学者特聘教授,获国务院政府特殊津贴,入选国家级百千万人才工程计划。Tungsten副主编,International Journal of Nonferrous Metallurgy、Applied Microscopy、《粉末冶金技术》等编委。长期从事无机材料制备、性能分析及技术应用研究。获得国家技术发明二等奖一项,省部级一等奖两项,省部级技术发明二等奖两项,中国青年科技奖、茅以升北京青年科技奖、第八届霍英东青年教师基金获得者。授权美国发明专利3项,国家发明专利70余项,出版专著一部,在国内外学术期刊上发表SCI收录论文200余篇。主持国家863、国家自然科学基金重点基金、国家自然科学基金杰出青年基金等8项,省部级项目16项。
引用本文:    
王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
WANG Xuekai, WANG Jinshu, DU Yucheng, WU Junshu, TENG Weili, CHE Haibing, JIN Cuixin. Functionalization of Diatomite and Its Applications. Materials Reports, 2020, 34(3): 3017-3027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070130  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3017
1 Cicco S R, Vona D, Leone G , et al. MRS Communications, 2017, 7(2), 1.
2 Bozarth A, Maier U G, Zauner S. Applied Microbiology and Biotechnology, 2009, 82(2), 195.
3 Liu J, Zhao D F.Environmental Science and Management, 2009, 34(5), 104 (in Chinese).
刘洁, 赵东风, 环境科学与管理,2009, 34(5), 104.
4 Wen Y M, Teng H H. Advanced Materials Research, 2014, 1010-1012, 523.
5 Cotes-Palomino M T, Martínez-García C, Eliche-Quesada D, et al. Key Engineering Materials, 2016, 663, 94.
6 Slowing I I, Trewyn B G, Giri S, et al.Advanced Functional Materials, 2007, 17(8), 1225.
7 Terracciano M, Shahbazi M A, Correia A, et al. Nanoscale, 2015, 7(47), 20063.
8 Lo Y H, Yang C Y, Chang H K, et al. Scientific Reports, 2017, 7(1), 1.
9 Larouci M, Safa M, Meddah B, et al.Journal of Food Science and Technology, 2015, 52(3), 1677.
10 He M, Wu C, Wei J, et al.Industrial Water Treatment, 2005, 25(5), 25.
11 Li C, Zhang X Y, Liu J L, et al.Advanced Materials Research, 2011, 356-360, 2153.
12 Wu C D, Zhang J Y, Wang L, et al.Water Science & Technology, 2013, 67(7), 1620.
13 Mukerabigwi J F, Wang Q, Ma X, et al.Journal of Coatings Technology & Research, 2015, 12(6), 1085.
14 Shukry N A M, Hassan N A, Abdullah M E, et al.International Journal of Pavement Engineering, 2018(6), 1.
15 Wang B, Zhang G, Leng X, et al. Journal of Hazardous Materials, 2015, 285, 212.
16 Shang W, Qian X, Yu D.Journal of Applied Polymer Science, 2018, 135(20), 46275.
17 Zahalkova J, Rovnanikova P.Materials Science Forum, 2016, 865, 22.
18 Ivanov K S, Radaev S S, Selezneva O I. Glass & Ceramics, 2014, 71(5-6), 157.
19 Losic D, Mitchell J G, Voelcker N H.Advanced Materials, 2010, 21(29), 2947.
20 Losic D, Pillar R J, Dilger T, et al.Journal of Porous Materials, 2007, 14(1), 61.
21 Ghouti M A A, Degs Y S A. Chemical Engineering Journal, 2011, 173, 115.
22 Guo D S, Wang S W, Hu J, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2009, 339(1-3), 159.
23 Metin Gürü, Venedik D, Murathan A.Journal of Hazardous Materials, 2008, 160(2-3), 318.
24 Dessalew G, Beyene A, Nebiyu A, et al.Journal of Cleaner Production, 2017, 157, 22.
25 Zhang X, Yang H L, Li S, et al.Journal of Materials Science & Technology, 2018, 34, 1044.
26 Han L, Li F L, Deng X G, et al.Journal of the European Ceramic Society, 2017, 37, 2717.
27 He Y, Jiang B, Jiang Y, et al.Journal of Hazardous Materials, 2017, 344, 230.
28 Xia Y, Jiang X, Jing Z, et al.Applied Surface Science, 2017, 396, 1760.
29 Chen Y, Liu K R.Advanced Powder Technology, 2017, 28, 2225.
30 Shi M, Li J, Cai J, et al.Journal of Nanoscience and Nanotechnology, 2017, 17(9), 6686.
31 Sun Z, Yao G, Liu M, et al.Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 501.
32 Du Y C, Yan J, Meng Q, et al.Materials Chemistry and Physics, 2012, 133(2-3), 907.
33 Du Y C, Fan H G, Wang L P, et al. Journal of Materials Chemistry A, 2013, 1, 7729.
34 Du Y C, Wang L P, Wang J S, et al.Journal of Environmental Sciences, 2015, 29(3), 71.
35 Du Y C, Zheng G W, Wang J S, et al.Microporous & Mesoporous Mate-rials,2014, 200, 27.
36 Du Y C, Wang X K, Wu J S, et al.Particuology, 2018, 40, 123.
37 Du Y C, Wang X K, Wu J S, et al.Microporous & Mesoporous Materials, 2018, 271, 83.
38 Zheng G W, Du Y C, Hou R Q, et al.Chinese Journal of Inorganic Chemistry, 2015, 31(5), 930 (in Chinese).
郑广伟, 杜玉成, 侯瑞琴, 等, 无机化学学报, 2015, 31(5), 930.
39 Wang T N, Yang Y F, Wang J S, et al.RSC Advances, 2019, 9(7), 3816.
40 Ding C, Cheng W, Sun Y, et al.Geochimica et Cosmochimica Acta, 2015, 165, 86.
41 Crane R A, Dickinson M, Scott T B.Chemical Engineering Journal, 2015, 262(3), 319.
42 Sheng G D, Shao X Y, Li J F, et al.Journal of Physics Chemistry A, 2014, 118, 2952.
43 Liu Z T, Gu C G, Ye M, et al.Journal of Hazardous Materials, 2015, 298, 328.
44 Xu J L, Li Y L, Jing C, et al.Journal of Radio analytical & Nuclear Chemistry, 2014, 299(1), 329.
45 Sun X, Yan Y B, Li J S, et al.Journal of Hazardous Materials, 2014, 266, 26.
46 Sheng G D, Yang P J, Tang Y N, et al.Applied Catalysis B: Environmental, 2016, 193, 189.
47 Liang L P, Yang W J, Guan X H, et al.Water Research,2013, 47(15), 5846.
48 Toster J, Iyer K S, Xiang W C, et al.Nanoscale, 2013, 5(3), 873.
49 Selvaraj V, Muthukumar A, Nagamony P, et al. Environmental Science & Pollution Research International, 2017, 25(21), 1.
50 Chao J T, Biggs M J, Pandit A S.Expert Opinion on Drug Delivery, 2014, 11(11), 1687.
51 Uthappa U T, Brahmkhatri V, Sriram G, et al.Journal of Controlled Release,2018, 281, 70.
52 Onesto V, Villani M, Coluccio M L, et al. Nanoscale Research Letters, 2018, 13(1), 94.
53 Lu S H, Hu J S, Chen C L, et al. Separation & Purification Technology, 2017, 174, 425.
54 Fu Y, Xu X X, Huang Y, et al.Royal Society Open Science, 2017, 4(12), 170829.
55 Sun L M, Wang J S, Wu J S, et al. Journal of Materials Science,2019, 54, 6882.
56 Caner N, Sar1 A, Tüzen M. Industrial & Engineering Chemistry Research,2015, 54, 7524.
57 Fan L, Luo C, Sun M, et al. Colloids and Surfaces B: Biointerfaces, 2013, 103, 523.
58 Etemadi M, Samadi S, Yazd S S, et al. International Journal of Biological Macromolecules, 2013, 95, 725.
59 Reddy D, Lee S M. Advances in Colloid and Interface Science,2013, 201, 68.
60 Fu Y, Huang Y, Hu J S, et al.Water Science & Technology, 2018, 77(5), 1363.
61 Bayramoglu G, Akbulut A, Arica M Y.Journal of Hazardous Materials, 2013, 244-245(2), 528.
62 Gale D K, Gutu T, Jiao J, et al.Advanced Functional Materials, 2010, 19(6), 438.
63 Qin T, Gutu T, Jiao J, et al.Journal of Nanoscience & Nanotechnology, 2008, 8(5), 2392.
64 Zhen L, Ford N, Gale D K, et al.Biosensors and Bioelectronics, 2016, 79, 742.
65 Goldman E R, Goldman E R, Goldman E R, et al.Journal of Environmental Monitoring,2003, 5(3), 380.
66 Goldman E R, Medintz I L, Whitley J L, et al. Journal of the American Chemical Society, 2005, 127(18), 6744.
67 Ruggiero I, Terracciano M, Martucci N M, et al. Nanoscale Research Letters, 2014, 9(1), 1.
68 Terracciano M, Shahbazi M A, Correia A, et al.Nanoscale, 2015, 7(47), 20063.
69 Sinn A M, Simovic S, Yu Y, et al.Powder Technology,2012, 223(6), 52.
70 Cicco S R, Vona D, Giglio E D, et al. Chempluschem, 2015, 80(7), 1104.
71 Zhang Y X, Huang M, Li F, et al. Journal of Power Sources,2014, 246, 449.
72 Zhang Y X, Li F, Huang M, et al. Matters Letters, 2014, 120, 263.
73 Losic D, Triani G, Evans P J, et al.Journal of Materials Chemistry, 2006, 16(41), 4029.
74 Losic D, Yu Y, Aw M S, et al. Chemical Communications, 2010, 46(34), 6323.
75 Le Q J, Wang T, Tran D N, et al. Journal of Materials Chemistry A, 2017, 5, 10856.
76 Chandrasekaran S, Sweetman M J, Kant K, et al. Chemical Communications, 2014, 50(72), 10441.
77 Baniasadi E, Dincer I, Naterer G F.Applied Catalysis A: General, 2013, 455(2), 25.
78 Chen X P, Shangguan W F. Frontiers in Energy, 2013, 7(1),111.
79 Campbell B, Ionescu R, Tolchin M, et al. Scientific Reports, 2016, 6, 33050.
80 Rea I, Terracciano M, Chandrasekaran S, et al. Nanoscale Research Letters, 2016, 11(1),405.
81 Politi J, Rea I, Dardano P, et al. Sensors B Chem, 2015, 220, 705.
82 Sgammato R, Desiderio D, Lamberti A, et al. Electrophoresis, 2015, 36, 3101.
[1] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[2] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[3] 范海波, 任启芳, 余淼, 王苏蕾, 曹镜宇, 金震, 丁益. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33(20): 3383-3389.
[4] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[5] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[6] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[7] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[8] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[9] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[10] 姜丰, 史亚龙, 张洪恩, 石宵爽, 王清远. 预吸水硅藻土对高强混凝土早期抗裂性能的影响[J]. 材料导报, 2018, 32(20): 3541-3545.
[11] 包建民, 闫志英, 李优鑫. 微米级多孔聚苯乙烯-二乙烯苯微球的制备、改性及应用综述[J]. 材料导报, 2018, 32(17): 3060-3067.
[12] 杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
[13] 张振江, 祝丽荔, 金娟. 聚氨酯泡沫吸附剂的制备及其在金属离子富集/分离方面的应用*[J]. 《材料导报》期刊社, 2017, 31(5): 34-39.
[14] 常艺, 裴久阳, 周苏生, 陈名海, 刘宁, 李清文. 功能化碳纳米管改性热塑性复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 84-90.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed