Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3541-3545    https://doi.org/10.11896/j.issn.1005-023X.2018.20.009
  无机非金属及其复合材料 |
预吸水硅藻土对高强混凝土早期抗裂性能的影响
姜丰, 史亚龙, 张洪恩, 石宵爽, 王清远
四川大学建筑与环境学院,成都 610065;
Effect of the Pre-wetted Diatomite on the Cracking Resistance of High-strength Concrete at Early-age
JIANG Feng, SHI Yalong, ZHANG Hongen, SHI Xiaoshuang, WANG Qingyuan
College of Architecture and Environment, Sichuan University, Chengdu 610065;
下载:  全 文 ( PDF ) ( 1240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作创新性地将硅藻土进行预吸水处理,将其作为掺和料掺入高强混凝土中以解决高强混凝土易出现早期开裂的问题。试验研究了质量分数为1%、3%和5%的干燥硅藻土经过预吸水处理后对高强混凝土(混凝土等级C60)在特定状态下的早期抗裂性能和基本力学性能的影响,并结合水分蒸发试验,研究了掺入预吸水硅藻土后混凝土的失水规律。结果表明:与基准混凝土相比,预吸水硅藻土掺量为1%、3%和5%的高强混凝土的早期开裂面积分别减少31.8%、54.4%和65.8%,显著提高了高强混凝土的早期抗裂性能,同时降低了高强混凝土前期水分蒸发速率和质量损失,抑制其塑性收缩。另外,预吸水硅藻土的掺入对抗压强度未产生较大的负面影响,对劈裂抗拉强度与拉压比稍有提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜丰
史亚龙
张洪恩
石宵爽
王清远
关键词:  硅藻土  高强混凝土  预吸水  早期开裂  脆性  力学性能    
Abstract: In this paper, the diatomite were wetted to be used as the admixture in high-strength concrete in order to solve its early cracking problem. The effect of pre-wetted diatomite (the mass fraction of dry diatomite are 1%, 3% and 5%) on the early-age cracking resistance and the basic mechanical performance of high-strength concrete were studied. Water losing principle of the pre-wetted diatomite high-strength concrete was also tested by evaporation test. The results showed that the pre-wetted diatomite could significantly improve the early cracking resistance of the high-strength concrete. When the mass fraction of dry diatomite are 1%, 3% and 5%, the early cracking area of concrete were reduced by 31.8%, 54.4% and 65.8%. Meanwhile, the pre-wetted diatomite could significantly reduce the water losing of concrete, which inhibits plastic shrinkage. In addition, the incorporation of the pre-wetted diatomite could increases the tensile strength and the ratio of tension and compressive strength, and had no great negative effect on the compressive strength.
Key words:  diatomite    high-strength concrete    pre-wetted    early cracking    brittleness    mechanical property
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51208325);教育部创新团队滚动支持项目(IRT-14R37)
作者简介:  姜丰:1991年生,硕士研究生,主要从事新型混凝土材料耐久性能研究 E-mail:JFeducation@163.com 王清远:通信作者,1965年生,博士,教授,博士研究生导师,主要从事新型材料和工程结构研究 E-mail:wangqy@scu.edu.cn 石宵爽:通信作者,1984年生,博士,副教授,硕士研究生导师,主要从事新型混凝土材料,再生资源化利用的研究及应用 E-mail:shixs@scu.edu.cn
引用本文:    
姜丰, 史亚龙, 张洪恩, 石宵爽, 王清远. 预吸水硅藻土对高强混凝土早期抗裂性能的影响[J]. 材料导报, 2018, 32(20): 3541-3545.
JIANG Feng, SHI Yalong, ZHANG Hongen, SHI Xiaoshuang, WANG Qingyuan. Effect of the Pre-wetted Diatomite on the Cracking Resistance of High-strength Concrete at Early-age. Materials Reports, 2018, 32(20): 3541-3545.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.009  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3541
1 Huang S Y. The reflection of high performance concrete development[J].Concrete,2003(7):3(in Chinese).
黄士元.高性能混凝土发展的回顾与思考[J].混凝土,2003(7):3.
2 Paul J Uno. Plastic shrinkage cracking and evaporation formulas [J]. ACI Materials Journal,1998,95(4):365.
3 Gui M M. Research progress about plastic shrinkage cracking of concrete[J]. Materials Review A: Review Papers,2011,25(11):76(in Chinese).
桂苗苗.混凝土早期塑性收缩开裂的研究进展[J].材料导报:综述篇,2011,25(11):76.
4 Van Breugel K, Van Tuan N. Autogenous shrinkage of HPC and ways to mitigate it[J]. Key Engineering Materials,2015,629-630:3.
5 Shi J C, Lu K X, Ma X W,et al. Influence of SAP on the properties of self-compacting concrete[J]. Materials Review B: Research Papers,2015,29(10):118(in Chinese).
史才军,吕奎喜,马先伟,等.高吸水性树脂对自密实混凝土性能的影响[J].材料导报:研究篇,2015,29(10):118.
6 Han S, An M Z, Guo R, et al. Crack resistance of ceramsite self-curing high performance concrete[J]. Journal of Building Materials,2015,18(5):742(in Chinese).
韩松,安明喆,郭瑞,等.陶粒内养护高性能混凝土抗裂性能研究.建筑材料学报,2015,18(5):742.
7 Song X Y, Han J Y, Sun B J, et al. Comparison of effects of several kinds of mineral admixtures on brittleness and early-age cracking performance of concrete[J]. China Concrete and Cement,2017(6):86(in Chinese).
宋旭艳,韩静云,孙宝金,等.几种矿物掺合料对混凝土脆性及早期开裂性能影响比较[J].混凝土与水泥制品,2017(6):86.
8 Xiao J, Chen L, Xing H. Influence of fly ash and slag powder on autogenous shrinkage of cement mortars[J]. Journal of Building Materials,2011,14(5):604(in Chinese).
肖佳,陈雷,邢昊.粉煤灰和矿粉对水泥胶砂自收缩的影响[J].建筑材料学报,2011,14(5):604.
9 Kastis D, Kakali G, Tsivilis S, et al. Properties and hydration of blended cements with calcareous diatomite[J]. Cement and Concrete Research,2006,36:1821.
10 Wang B M, Song K, Han Y. Research on the comprehensive utilization of diatomite[J].Materials Review,2011,25(S2):468(in Chinese).
王宝民,宋凯,韩瑜.硅藻土资源的综合利用研究[J].材料导报,2011,25(专辑18):468.
11 Zhang Z L. Investigation on the shrinkage-reducing effect of super-absorbent polymer in high-strength concrete and its mechanism[D]. Beijing: Tsinghua University,2013(in Chinese).
张珍林.高吸水性树脂对高强混凝土早期减缩效果及机理研究[D].北京:清华大学,2013.
12 Cui Z Z, Wang J F, Zhang C, et al. Effect of magnesium slag and slag composite on early crack resistance of concrete [J]. Science Technology and Engineering,2016,16(8):281(in Chinese).
崔自治,王建峰,张程,等.镁渣矿粉复合对混凝土早期抗裂的影响研究[J].科学技术与工程2016,16(8):281.
13 Chen Y, He Z, Wang L, et al. Effect of internal-curing on hydration and microstructure of cement[J]. Concrete,2010(12):40(in Chinese).
陈衍,何真,王磊,等.内养护对水泥浆水化及微观结构的影响[J].混凝土,2010(12):40.
14 Sun Q H, Wei Y Q, Meng Y F. Preparation and properties of high performance recycled concrete (HPRC) ameliorated by calcined dia-tomite[J]. Concrete,2012(9):129(in Chinese).
孙庆和,魏永起,孟云芳.硅藻土改性高性能混凝土的制备及性能[J].混凝土,2012(9):129.
15 Zheng J L, Luo S R, Wang X F. The research on the cracking behavior of high performance concrete[J]. Engineering Mechanics,2008,25(S2):72(inChinese).
郑建岚,罗素蓉,王雪芳.高性能混凝土抗裂性能研究[J],工程力学,2008,25(S2):72.
16 Nurhayat Degirmenci, Arin Yilmaz. Use of diatomite as partial replacement for Portland cement in cement mortars[J]. Construction and Building Materials,2009,23: 284.
17 Wu Linmei, Nima Farzadnia, Shi Caijun, et al. Autogenous shrin-kage of high performance concrete: A review[J]. Construction and Building Materials,2017,149:62.
18 Chen Z Y, Cui J H, Zhu J Q, et al. Analysis and control of crac-king in reinforced control[J]. Engineering Mechanics,2006,23(a01):86(in Chinese).
陈肇元,崔京浩,朱金铨,等.钢筋混凝土裂缝机理与控制措施[J].工程力学,2006,23(增刊Ⅰ):86.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed