Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1230-1235    https://doi.org/10.11896/j.issn.1005-023X.2018.08.005
  材料研究 |
等钒铁渣复合物改性硅藻土制备高强耐水调湿材料
胡明玉1, 付超1, 魏丽丽1,2, 刘章君1
1 南昌大学建筑工程学院,江西省超低能耗建筑重点实验室,南昌 330031;
2 赤峰学院建筑与机械工程学院,赤峰 024000
A High-strength and Water-resistant Humidity-controlling Material Prepared by Modifying Diatomite with Vanadium- and Iron-containing Compound Slag
HU Mingyu1, FU Chao1, WEI Lili1,2, LIU Zhangjun1
1 Key Laboratory for Ultra-low Energy Building of Jiangxi Province, School of Civil Engineering and Architecture, NanchangUniversity, Nanchang 330031;
2 School of Architectural and Mechanical Engineering, Chifeng University, Chifeng 024000
下载:  全 文 ( PDF ) ( 1955KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以天然硅藻土为原材料,以钒铁渣复合物为无机改性掺合料,采用简单成型和自然养护工艺制备调湿材料。研究了无机改性掺合料掺量对硅藻土调湿材料强度、耐水性和调湿性能的影响,并根据SEM分析及材料的吸附/解吸理论对无机改性掺合料的改性机理和硅藻土调湿材料的调湿机理进行了研究。研究表明,无机改性掺合料用量为15%~20%时,材料60 d抗压强度和软化系数可分别达到5.5~6.10 MPa、0.62~0.74,最大平衡含湿率为19.9%~20.8%,最大吸、放湿速率为0.069~0.073 kg/(kg·d)、0.042~0.045 kg/(kg·d),具有很好的强度、耐水性和调湿性能。无机改性掺合料与硅藻土发生离子交换、硬凝反应和团粒化作用,并在毛细孔道效应、化学吸附和表面物理吸附作用下,使硅藻土调湿材料具有高的强度、耐水性和优异的调湿性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡明玉
付超
魏丽丽
刘章君
关键词:  硅藻土调湿材料  抗压强度  软化系数  平衡含湿率  吸、放湿速率    
Abstract: The new diatomite humidity-controlling material was prepared by using natural diatomite as raw materials, vana-dium- and iron-containing compound slag as inorganic modified admixture. It was cured in room temperature after simple compaction molding. The effect of the inorganic modified admixture content on strength, water resistance, and humidity-controlling performance of the diatomite humidity-controlling material were tested. Based on the micro-analysis of the scanning electron microscope and the absorption/desorption theory of materials, the modified mechanism and the humidity-controlling mechanism of the diatomite humidity-controlling material were investigated. The results showed that when the content of inorganic modified admixture was 15%—20%, the compressive strength, softening coefficient, the maximum equilibrium moisture content, and the maximum absorption and desorption rate of the diatomite humidity-controlling material at 60 d were 5.5—6.10 MPa, 0.62—0.74, 19.9%—20.8%, 0.069—0.073 kg/(kg·d) and 0.042—0.045 kg/(kg·d), respectively, which indicated that the material had an excellent performance. The hardening mechanism of the diatomite humidity-controlling material were ion exchange reaction, aggregate effect and hard coagulation reaction. The cellular microstructure of diatomite humidity-controlling material have the effects of capillary channel, chemical adsorption and surface physical adsorption on water vapor, which enable its excellent strength, water resistance and humidity-controlling performance.
Key words:  diatomite humidity-controlling materials    compressive strength    softening coefficient    equilibrium moisture content    absorption and desorption rate
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51362021); 江西省水利厅科技项目(KT201331)
作者简介:  胡明玉:女,1958年生,博士,教授,主要从事生态环境材料和建筑结构材料研究 E-mail:892660685@qq.com
引用本文:    
胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
HU Mingyu, FU Chao, WEI Lili, LIU Zhangjun. A High-strength and Water-resistant Humidity-controlling Material Prepared by Modifying Diatomite with Vanadium- and Iron-containing Compound Slag. Materials Reports, 2018, 32(8): 1230-1235.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.005  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1230
1 Deng Ni, Wu Shuanglei, Chen Huxing. Overview on research of humidity-controlling materials[J].Materials Review,2013,27(S2):368(in Chinese).
邓妮,武双磊,陈胡星.调湿材料的研究概述[J].材料导报,2013,27(S2):368.
2 Lei Panpan, Wei Jiangxiong, Yu Qijun, et al. Study on the modification of natural mordenite and its humidity performance[J].Journal of Wuhan University of Technology,2013,12(12):15(in Chinese).
雷盼盼,韦江雄,余其俊,等.沸石改性及调湿性能研究[J].武汉理工大学学报,2013,12(12):15.
3 Li Xiaoli. Study on preparation and application in coating of humidity-controlling composite material[D].Quanzhou:Huaqiao University,2008(in Chinese).
李晓丽.复合调湿材料的制备及其在涂料中的应用研究[D].泉州:华侨大学,2008.
4 Li Wei, Zhang Jian, Li Na, et al. Preparation and properties of functional coating with diatomite loading titanium[J].Journal of Functional Materials,2015,22(8):141(in Chinese).
李炜,张健,李娜,等.载钛硅藻土功能涂料的制备及性能[J].功能材料,2015,22(8):141.
5 Wang Hanqing, Yi Hui, Li Duanru, et al. Experimental research on sepiolite humidity-controlling coating’s preparation and humidity performance[J].Building Science,2014,12(7):60(in Chinese).
王汉青,易辉,李端茹,等.海泡石调湿涂料配制及调湿性能试验研究[J].建筑科学,2014,12(7):60.
6 Yang Hailiang, Peng Zhiqin, Zhou Yang, et al. Preparation and performances of a novel intelligent humidity control composite material[J].Energy and Buildings,2011,43:386.
7 Gonzalez J C, Molina-Sabio M, Rodrguez-Reinoso F. Sepiolite-based adsorbents as humidity controller[J].Applied Clay Science,2001,20:111.
8 Wang Jihui, Li Yan, Zhang Ziyang. Synthesis and humidity controlling behaviors of attapulgite/polyacrylic acid composite[J].Chinese Journal of Materials Research,2010,2(9):113(in Chinese).
王吉会,李燕,张子洋.凹凸棒粘土/聚丙烯酸复合材料的制备与调湿性能[J].材料研究学报,2010,2(9):113.
9 Sajo P Naik, Anthony S T Chiang, Thompson R W. Synthesis of zeolitic mesoporous materials by dry gel conversion under controlled humidity[J].Physical Chemistry B,2003,107:7006.
10 Dong Fei. Synthesis and humidity controlling properties of mineral/poly(sodium acrylate-acrylamide)composite[D].Tianjin:Tianjin University,2014(in Chinese).
董飞.三种无机矿物/聚(丙烯酸-丙烯酰胺)调湿复合材料的制备及性能研究[D].天津:天津大学,2014.
11 Jiang Zhengwu, Zeng Zhiyong. Effect of acidizing conditions on humidity-controlling properties of sepiolite[J].Journal of Tongji University(Nature Science),2008,12(12):1674(in Chinese).
蒋正武,曾志勇.酸化条件对海泡石调湿性能的影响[J].同济大学学报(自然科学版),2008,12(12):1674.
12 Vu D H, Wang K S, Bac B H, et al. Humidity control materials prepared from diatomite and volcanic ash[J].Construction and Building Materials,2013,38:1066.
13 Chen Guanyi, Bai Xiaoling, Zhang Xiumei, et al. Research on cha-racteristics of biomass-based humidity-controlling materials[J].Heating Ventilating and Air Conditioning,2007,37(11):14(in Chinese).
陈冠益,白晓玲,张秀梅,等.生物质基调湿材料的特性研究[J].暖通空调,2007,37(11):14.
14 Li Xin, Li Huiling, Feng Weihong, et al. Effect of different hygroscopicity groups on moisture absorption/release of polymer humidity control materials[J].Journal of Central South University(Science and Technology),2011,1(4):28(in Chinese).
李鑫,李慧玲,冯伟洪,等.不同吸湿官能团对高分子调湿材料吸湿和放湿性能的影响[J].中南大学学报(自然科学版),2011,1(4):28.
15 Tian Ying. Preparation and performance on the diatom styrene-acry-lic internal wall coating[D].Shenyang:Shenyang Jianzhu University,2014(in Chinese).
田莹.硅藻基苯丙内墙涂料的制备与性能[D].沈阳:沈阳建筑大学,2014.
16 Lv Rongchao. Fundamental researches of sepiolite, diatomite and zeolite as humidity control building materials[D].Beijing:China Building Materials Academy,2005(in Chinese).
吕荣超.海泡石、硅藻土、沸石、作为调湿建筑材料的基础研究[D].北京:中国建筑材料科学研究院,2005.
17 Yuan Peng, Wu Daqing, Lin Zhongyu. Study on the surface hydroxyl species of diatomite using DRIFT spectroscopy[J].Spectroscopy and Spectral Analysis,2001,21(6):783(in Chinese).
袁鹏,吴大清,林种玉.硅藻土表面羟基的漫反射红外光谱(DRIFT)研究[J].光谱学与光谱分析,2001,21(6):783.
18 Wang R M, Wang J F, Wang X W, et al. Preparation of acrylate-based copolymer emulsion and its humidity controlling mechanism in interior wall coatings[J].Progress in Organic Coatings,2011,71(4):369.
19 Ke Shujun. Study on the new raw soil materials[D].Nanchang:Nanchang University,2015(in Chinese).
柯书俊.新型生土材料研究[D].南昌:南昌大学,2015.
20 Jiang Zhengwu. Research progress of humidity controlling materials[J].Materials Review,2006,10(2):8(in Chinese).
蒋正武.调湿材料的研究进展[J].材料导报,2006,10(2):8.
[1] 方双明, 付娟, 罗洁, 彭祝, 李子玲, 程金科. 无机碱与季铵盐协同改性磷石膏的抗霉特性及物理力学性能研究[J]. 材料导报, 2025, 39(3): 24010006-8.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[4] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[5] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[6] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[7] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[8] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[9] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[10] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[11] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[12] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[13] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[14] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[15] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed