Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 24010006-8    https://doi.org/10.11896/cldb.24010006
  无机非金属及其复合材料 |
无机碱与季铵盐协同改性磷石膏的抗霉特性及物理力学性能研究
方双明, 付娟, 罗洁, 彭祝, 李子玲, 程金科*
贵州大学化学与化工学院,贵阳 550025
Study on the Anti-mold Characteristics and Physical and Mechanical Properties of Phosphogypsum Modified Synergistically by Inorganic Alkali and Quaternary Ammonium Salt
FANG Shuangming, FU Juan, LUO Jie, PENG Zhu, LI Ziling, CHENG Jinke*
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 12598KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 西南地区磷石膏建材易发生霉变,影响产品质量和人体健康,制约其资源化利用。为控制霉菌污染,本工作从霉菌生物结构和适存环境出发,以黑曲霉为感染源,分别采用耐霉菌性等级法、抑菌圈法和软化系数及抗压强度测定检测材料抗霉性能及物理力学性能,通过XRD、FT-IR和SEM等方法进行结构表征和微观形貌分析,构建无机碱性材料与有机季铵盐协同抗霉模型,探讨其抗霉机理。结果表明:单掺无机碱只能提升材料短期抗霉效果,且提升程度受pH、无机成分和吸湿性能共同调控;Ca(OH)2和季铵盐的协同改性能获得优异抗霉效果与耐久性,但季铵盐掺杂会劣化其软化系数和抗压强度。复掺质量分数10% Ca(OH)2和0.1% CTAB试件的物理力学性能较优;Ca(OH)2和季铵盐协同增强抗霉作用在于:OH-和季铵根离子分别以氢键和静电吸引作用稳定依附于CaSO4·2H2O晶体表面,前者让霉菌孢子生物膜系统的蛋白质变性后,后者对磷脂双分子层的破坏程度加剧,加速霉菌孢子失活,提高抗霉性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方双明
付娟
罗洁
彭祝
李子玲
程金科
关键词:  磷石膏  协同抗霉  季铵盐  抑菌圈  软化系数    
Abstract: Phosphogypsum building materials in Southwest China are prone to mold, which affects product quality and human health, thus restricting its resource utilization. To control mold contamination, this paper starts from the mold biological structure and suitable survival environment, using Aspergillus niger as the source of infection, and uses the mold resistance grade method, ring of inhibition method, softening coefficient and compressive strength determination to assess the anti-mold performance and the physical and mechanical performance of the materials. Structural characterization and microscopic morphology analysis were carried out by XRD, FT-IR and SEM, and a synergistic model of inorganic alkaline materials and organic quaternary ammonium salts was constructed to explore the anti-mold mechanism. The results show that doping inorganic alkali alone can only enhance the short-term mold resistance, and the degree of improvement is regulated by pH, inorganic components, and moisture absorption performance. The synergistic modification of Ca(OH)2 and quaternary ammonium salt can obtain excellent anti-mold effect and durability, but the doping of quaternary ammonium salt will deteriorate its softening coefficient and compressive strength, and the physical and mechanical properties of the specimens were better when compounded with 10% Ca(OH)2 and 0.1% CTAB by mass fraction. Ca(OH)2 and quaternary ammonium salts synergistically enhance the anti-mold effect lies in the fact that OH- and quaternary ammonium ions are stably attached to the surface of CaSO4·2H2O crystals by hydrogen bonding and electrostatic attraction, respectively, and after the former denatures the proteins of the biofilm system of mold spores, the latter intensifies the destruction of phospholipid bilayer, which speeds up the inactivation of the mold spores and improves the anti-mold property.
Key words:  phosphogypsum    synergistic antifungal    quaternary ammonium salt    circle of inhibition    softening coefficient
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TB34  
基金资助: 贵州省科技厅工程技术研究中心项目(黔科合平台-JXCX[2021]002);贵州省科技支撑计划(黔科合支撑[2021]一般331;黔科合支撑[2023]一般394)
通讯作者:  *程金科,贵州大学化学与化工学院副教授。1997年7月武汉理工大学硅酸盐工程专业本科毕业,2002年7月贵州大学材料学专业硕士毕业,2008年7月华东师范大学纳米物理学专业博士毕业。目前主要从事固废资源化、材料腐蚀与防护等方面的研究工作。36273332@qq.com   
作者简介:  方双明,2021年6月于广东工业大学获得工学学士学位。现为贵州大学化学与化工学院硕士研究生,在程金科副教授的指导下进行研究。主要研究方向为固体废弃物资源化利用。
引用本文:    
方双明, 付娟, 罗洁, 彭祝, 李子玲, 程金科. 无机碱与季铵盐协同改性磷石膏的抗霉特性及物理力学性能研究[J]. 材料导报, 2025, 39(3): 24010006-8.
FANG Shuangming, FU Juan, LUO Jie, PENG Zhu, LI Ziling, CHENG Jinke. Study on the Anti-mold Characteristics and Physical and Mechanical Properties of Phosphogypsum Modified Synergistically by Inorganic Alkali and Quaternary Ammonium Salt. Materials Reports, 2025, 39(3): 24010006-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010006  或          http://www.mater-rep.com/CN/Y2025/V39/I3/24010006
1 Han F, Fang D, Feng Y, et al. Separation and Purification Technology, 2023, 323, 124358.
2 Zhang J, Xie W M, Dong X B, et al. Materials Reports, 2023, 37(16), 167 (in Chinese).
张峻, 解维闵, 董雄波, 等. 材料导报, 2023, 37(16), 167.
3 Chernysh Y, Yakhnenko O, Chubur V, et al. Applied Sciences, 2021, 11(4), 1575.
4 Chen M, Liu P, Kong D, et al. Coatings, 2022, 12(12), 1918.
5 Li Y, Dai S, Zhang Y, et al. Journal of Applied Biomaterials & Functional Materials, 2018, 16, 81.
6 Li u W S , Li L J, Zhou X T. Materials Research Express, 2023, 10(3), 35504.
7 Hoang C P, Kinney K A, Corsi R L, et al. International Biodeterioration & Biodegradation, 2010, 64(2), 104.
8 Viitanen H, Vinha J, Salminen K, et al. Journal of Building Physics, 2010, 33(3), 201.
9 Andersen B, Frisvad J C, Sondergaard I, et al. Applied and Environmental Microbiology, 2011, 77(12), 4180.
10 Hu M Y, Wang H Y, Liu Z H, et al. Materials Reports, 2020, 34 (14), 14051 (in Chinese).
胡明玉, 王红英, 刘子航, 等. 材料导报, 2020, 34(14), 14051.
11 Johansson P, Ekstrand-Tobin A, Svensson T, et al. International Biodeterioration & Biodegradation, 2012, 73, 23.
12 Misnikov O, Ivanov V. E3S Web of Conferences, 2017, 15, 1017.
13 Gómez-Ortíz N, De la Rosa-García S, González-Gómez W, et al. ACS Applied Materials & Interfaces, 2013, 5(5), 1556.
14 Do J, Song H, So H, et al. Cement and Concrete Research, 2005, 35(2), 371.
15 Jerónimo A, Camões A, Aguiar B, et al. Applied Surface Science, 2019, 483, 1192.
16 Jerónimo A, Soares C, Aguiar B, et al. Construction and Building Materials, 2020, 255, 119368.
17 De Muynck W, De Belie N, Verstraete W. Journal of Applied Microbiology, 2010, 108(1), 62.
18 Shinde D B, Pawar R, Vitore J, et al. Polymers for Advanced Technologies, 2021, 32(11), 4204.
19 Saidin S, Jumat M A, Mohd Amin N A A, et al. Materials Science and Engineering:C, 2021, 118, 111382.
20 Peters R A, Wilson T H. Biochimica et Biophysica Acta, 1952, 9, 310.
21 Yang Y, Reipa V, Liu G, et al. ACS Applied Materials & Interfaces, 2018, 10(10), 8566.
22 Liu N, Chu D, Chen X, et al. Coatings, 2023, 13(4), 745.
23 Almeida E S T, Gorup L F, de Araújo R P, et al. Food and Bioprocess Technology, 2020, 13(12), 2065.
24 Zhang H, Chai W, Cao Y. Applied Surface Science, 2022, 576, 151834.
25 Gow N A R, Latge J, Munro C A. Microbiology Spectrum, 2017, 5(3), 1.
[1] 王露, 涂拥军, 高富豪, 刘数华. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 22120115-6.
[2] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
[3] 张峻, 解维闵, 董雄波, 杨华明. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 22010110-12.
[4] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[5] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[6] 朋许杰, 李建军, 曹瑞昌, 戎鑫, 李梦, 刘银. 磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能[J]. 材料导报, 2022, 36(21): 21060259-7.
[7] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[8] 张立力, 华苏东, 诸华军, 顾增欢, 谷重, 赵益河. 高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的性能[J]. 材料导报, 2020, 34(9): 9034-9040.
[9] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[10] 王业飞, 钱程, 杨震, 丁名臣, 王任卓. 新型喹啉季铵盐酸化缓蚀剂氯化苯甲酰甲基喹啉(PCQ)的合成及缓蚀性能[J]. 材料导报, 2019, 33(4): 699-704.
[11] 赵红涛, 王树民, 刘志江, 张曼. 磷石膏矿化固定CO2制备高纯高白CaCO3[J]. 材料导报, 2019, 33(18): 3031-3034.
[12] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[13] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[14] 梁 娇,楚婉怡,黄永波,李凤玲,刘 娜,钱觉时. 预分解磷石膏制备贝利特-硫铝酸盐水泥[J]. 《材料导报》期刊社, 2017, 31(24): 1-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed