Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2118-2123    https://doi.org/10.11896/j.issn.1005-023X.2018.12.033
  计算模拟 |
基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理
栾扬1,赵志曼1,全思臣2,曾众1,吴佳丽1,梁祎1
1 昆明理工大学建筑工程学院,昆明 650500;
2 云南昆钢钢结构有限公司,安宁 650300
The Crystal Modification Mechanism of Phosphogypsum by Surface-adsorbed Succinic Acid: a Density Functional Theory Study
LUAN Yang1, ZHAO Zhiman1, QUAN Sichen2, ZENG Zhong1, WU Jiali1, LIANG Yi1
1 Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500;
2 Yunnan Kunming Steel Structure Limited Company, Anning 650300
下载:  全 文 ( PDF ) ( 3005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于密度泛函理论的第一性原理,对磷石膏晶面及吸附物丁二酸构型进行了优化,通过丁二酸与晶体表面的吸附模型计算模拟了丁二酸以三种不同的吸附方式分别与晶面发生反应,结果发现丁二酸最可能的吸附方式为丁二酸羧基中双键氧原子被晶面上的Ca原子垂直吸附,且为化学吸附。采用扫描电镜、X射线衍射和X射线光电子能谱分析了丁二酸对磷石膏晶体形貌及表面电子结合能的影响,并测得不同掺量丁二酸作用下磷石膏的抗折、抗压强度。研究发现,丁二酸中羟基与磷石膏晶面Ca元素发生了表面化学作用,与模拟结果基本一致,丁二酸吸附于磷石膏晶面的作用机理表现为丁二酸中O的2p和H的1s轨道中的电子向晶面上Ca的3d轨道发生了迁移。在杂质预处理过程中,丁二酸添加量为磷石膏用量的0.2%时磷石膏的抗折、抗压强度最大,分别为6.9 MPa和31.6 MPa。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栾扬
赵志曼
全思臣
曾众
吴佳丽
梁祎
关键词:  磷石膏  丁二酸  吸附  密度泛函理论  晶型转化剂    
Abstract: Geometric and electronic structure of phosphogypsum surfaces and succinic acid were optimized by density functio-nal theory. The reactions corresponding to three different adsorption modes of succinic acid on phosphogypsum surfaces was simulated, indicating that the most tentative adsorption mode is the vertical adsorption of double bond oxygen atoms in the carboxyl group onto the Ca atoms. The effects of succinic acid dosage on the crystal morphology and surface electron bonding energy of phosphogypsum were analyzed by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy, meanwhile the flexural strength and compressive strength of the phosphogypsum were measured. The simulation results coincided well with the experimental results, and verified the the surface chemical interaction between hydroxyl and Ca. The action mechanism of succinic acid adsorption on phosphogypsum crystal surface was revealed by the electron transfer from O 2p and H 1s orbitals of succinic acid molecules to 3d orbitals of Ca atoms on the crystal surface. During the process of impurity pretreatment, the maximum flexural strength and compressive strength,6.9 MPa and 31.6 MPa respectively, can be obtained while the succinic acid phosphogypsum mass ratio is 0.2%.
Key words:  phosphogypsum    succinic acid    adsorption    density function theory    crystal modifier
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TQ177.3+7  
基金资助: 国家自然科学基金(51662022);云南昆钢钢结构有限公司资助项目
作者简介:  栾扬:男,1991年生,硕士研究生,主要从事磷建筑石膏材料研究 E-mail:530194490@qq.com 赵志曼:通信作者,女,1962年生,教授,硕士研究生导师,主要从事固体废弃物建筑材料资源化利用研究 E-mail:lzd2005@126.com
引用本文:    
栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
LUAN Yang, ZHAO Zhiman, QUAN Sichen, ZENG Zhong, WU Jiali, LIANG Yi. The Crystal Modification Mechanism of Phosphogypsum by Surface-adsorbed Succinic Acid: a Density Functional Theory Study. Materials Reports, 2018, 32(12): 2118-2123.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.033  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2118
1 Du Lushan, Ming Dazeng, Li Zhixiang. Utilization and recovery of phosphogypsum[J]. Technology & Development of Chemical Industry,2010(4):25(in Chinese).
杜璐杉,明大增,李志祥.磷石膏的利用和回收[J].化工技术与开发,2010(4):25.
2 Xu Jin, Sun Zhiyan. Approach to constraining factors and its strategy in comprehensive utilization of phosphogypsum[J]. Industrial Minerals and Processing,2009,38(6):25(in Chinese).
徐进,孙志岩.磷石膏综合利用制约因素分析及对策探讨[J].化工矿物与加工,2009,38(6):25.
3 He Yuxin, Wan Jiandong, Tang Yongbo. Analysis on diversificational utilization of phosphogypsum[J]. Phosphate & Compound Fertilizer,2013,28(6):58(in Chinese).
何玉鑫,万建东,唐永波.磷石膏多元化应用研究进展[J].磷肥与复肥,2013,28(6):58.
4 Han Song, Zhao Zhiman, Cheng Yaohua. On study of pretreatment for preparation of gypsum building plaster with yunnan phosphorus[J]. Science Technology and Engineering,2014(30):250(in Chinese).
韩松,赵志曼,成耀华.关于利用云南磷石膏制备磷建筑石膏预处理实验研究[J].科学技术与工程,2014(30):250.
5 Peng Jiahui, Zhang Jianxin. Effect of organic acid on crystalline ha-bit of α-hemihydrate desulfurization gypsum and its crystal modification mechanism[J]. Journal of the Chinese Ceramic Society,2011,39(10):1711(in Chinese).
彭家惠,张建新.有机酸对α半水脱硫石膏晶体生长习性的影响与调晶机理[J].硅酸盐学报,2011,39(10):1711.
6 Yue Wenhai, Wang Zhi. Study on the action mechanism of alpha hemihydrate gypsum crystal conversion agent[J]. Journal of Wuhan University of Technology,1996,18(2):1(in Chinese).
岳文海,王志.α半水石膏晶型转化剂作用机理的探讨[J].武汉工业大学学报,1996,18(2):1.
7 He Yulong, Chen Deyu. Regulation of crystal morphology of α hemihydrate gypsum in the presence of medium crystal agent[J]. Journal of Synthetic Crystals,2016,45(1):192(in Chinese).
何玉龙,陈德玉.晶形控制剂对α 半水石膏结晶形态的调控研究[J].人工晶体学报,2016,45(1):192.
8 Zhang Xiuying, Chi Mingqiao, Yan Xiuying. Effect of organic crystal modifier on crystal morphology of α-hemihydrate gypsum by salt solution method at atmospheric pressure[J]. Metal Mine,2016(10):181(in Chinese).
张秀英,迟铭巧,闫秀莹.有机转晶剂对常压盐溶液法制备α 半水石膏晶体形态的影响[J].金属矿山,2016(10):181.
9 Yu Degao, Yang Xinya,et al. A research on the properties and microstructure of hemihydrate gypsum[J]. Journal of Wuhan University of Technology,2006,28(5):27(in Chinese).
喻德高,杨新亚,等.半水石膏性能与微观结构的探讨[J].武汉理工大学学报,2006,28(5):27.
10 Yang Lin. Preparation of α-high strength gypsum using phosphogypsum and transformation of phosphogypsum to α-high strength gypsum[J]. Journal of Building Materials,2014,17(1):147(in Chinese).
杨林.磷石膏制备α型高强石膏及其转化过程研究[J].建筑材料学报,2014,17(1):147.
11 Barbier E,Coste M,Genin A. Simultaneous determination of nucleation and crystal growth kinetics of gypsum[J]. Chemical Engineering Science,2009,64:363.
12 Bosbach D, Michael F Jr H. Gypsum growth in the presence of growth inhibitors: A scanning force microscopy study[J]. Chemical Geology,1996,132: 227.
13 Peng Jiahui,et al. Effect of succinic acid on crystal growing habit and crystal morphology of α-hemihydrate desulfogypsum[J]. Journal of Southeast University,2011,41(6):1307(in Chinese).
彭家惠,等.丁二酸对α半水脱硫石膏晶体生长习性与晶体形貌的影响[J].东南大学学报,2011,41(6):1307.
14 Zhang Riguang,Zheng Huayan,Wang Baojun,et al. Quantum che-mistry studies on the free-radical growth mechanism of polycyclic arenes from benzene precursors[J]. Chinese Journal of Chemical Engineering,2009,3:394.
15 Atkins P W. Physical Chemistry’7th Ed[M]. Oxford: Oxford University Press,2002.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[4] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[5] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[6] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[7] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[8] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[9] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[10] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[11] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[12] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[13] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[14] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[15] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed