Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9034-9040    https://doi.org/10.11896/cldb.19040200
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的性能
张立力1, 华苏东1, 诸华军2, 顾增欢1, 谷重3, 赵益河3
1 南京工业大学材料科学与工程学院,南京 211800
2 盐城工学院材料科学与工程学院,盐城 224051
3 宿迁华益混凝土有限公司,宿迁 223839
Properties of Solidified and Modified Saline Soil by High Magnesium Nickel Slag-Phosphogypsum Based Cementitious Materials
ZHANG Lili1, HUA Sudong1, ZHU Huajun2, GU Zenghuan1, GU Zhong3, ZHAO Yihe3
1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
2 College of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
3 Suqian Huayi Concrete Co., Ltd., Suqian 223839, China
下载:  全 文 ( PDF ) ( 8089KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以高镁镍渣(HMNS)和磷石膏(PG)等工业固体废弃物为主要胶凝材料,针对盐渍淤泥的处理难点,同时固化和改良处理盐渍淤泥。评价了高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的工程性能和理化性能,并对固化作用机制进行了分析。通过现场试验进一步验证高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的可行性。结果表明:HMNS-PG基胶凝材料固化盐渍土路用性能优于传统水泥固化土。掺20%HMNS-PG基胶凝材料固化土饱水1 d、3 d、5 d、7 d后的水稳系数分别为0.84、0.81、0.8、0.79。冻融循环15次后固化体抗压强度损失率和质量损失率分别为13.2%和2.9%,试件完整性良好。同时磷石膏改良盐渍土使得盐分析出,土壤颗粒团聚,减少了盐胀等病害。HMNS-PG基胶凝材料改良盐渍土后,盐渍土的pH值降低,浸出液电导率EC值提高,钠的吸附比 (Sodium adsorption ratio, SAR)降低。现场固化试验中,试段取两组试样测得无侧限强度分别为3.4 MPa和2.8 MPa,压实度分别为94.7%和94.1%,240 d电导率提高了约118.1%,pH值下降了约6.13%,理化性能明显得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张立力
华苏东
诸华军
顾增欢
谷重
赵益河
关键词:  盐渍土  高镁镍渣  磷石膏  固化  改良    
Abstract: In this work, industrial solid waste such as high magnesium nickel slag (HMNS) and phosphogypsum (PG) was used as the main cementitious material for the treatment of salted sludge, the salted sludge was treated by solidification and improvement at the same time. The physical and chemical properties of high magnesium nickel slag-phosphogypsum based cementitious materials for solidify and modify saline soil were evaluated, and the mechanism of solidification was analyzed. Finally, the feasibility of solidification and modification of saline soil by high magnesium nickel slag-phosphogypsum based cementitious material was verified by field test. The results showed that the road performance of solidified saline soil with HMNS-PG based cementitious material was better than that of traditional cement solidified soil. The water stability coefficients of the soil after 1 d, 3 d, 5 d and 7 d solidification with 20% HMNS-PG-based cementitious materials were 0.84, 0.81, 0.8 and 0.79, respectively. After 15 freeze-thaw cycles, the compressive strength loss rate and mass loss rate of the solidified body were 13.2% and 2.9%, respectively, and the integrity of the test piece was good. At the same time, the phosphogypsum improved the saline soil, so that the salt was precipitated, the soil particles were agglomerated, and the salt swelling and other diseases were reduced. After improving the saline soil with HMNS-PG-based cementitious material, the pH value of the saline soil decreased, the EC value of the conductivity of the leachate increased, and the sodium adsorption ratio (SAR) decreased. In the on-site curing test, the unconfined strengths of the two groups were 3.4 MPa and 2.8 MPa, the compaction degrees were 94.7% and 94.1%, respectively, and the conductivity of 240 d was increased by about 118.1%. The pH value fell by about 6.13%, the physical and chemical properties were obviously improved.
Key words:  saline soil    high magnesium nickel slag    phosphogypsum    solidification    modification
                    发布日期:  2020-04-27
ZTFLH:  TQ172  
基金资助: 江苏省社会发展项目(SBE2017740749);宿迁市社会发展项目(S201708);江苏省科技厅重点研究发展计划(社会发展)(BE2018697)
通讯作者:  huasudong@126.com   
作者简介:  张立力,1994年8月生,硕士研究生,就读于南京工业大学,主要从事固体废弃物综合利用和土壤固化方面的研究。
华苏东,男,1981年生,江苏淮安人,硕导,副教授。2007年获南京工业大学材料学博士学位,2010年南京工业大学化学技术与工程博士后出站。主要从事无机固体废弃资源化利用(主要是工业副产品石膏、冶金废渣、工业污泥和油田固废等)、土壤固化材料、油田化学材料和新型建筑材料等研究。承担和参与了国家科技部863、江苏省教育厅、江苏省科技厅和企业等科研项目10余项。发表论文30余篇,获授权国家发明专利5项,现任江苏省循环经济协会固废综合利用分会秘书长。
引用本文:    
张立力, 华苏东, 诸华军, 顾增欢, 谷重, 赵益河. 高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的性能[J]. 材料导报, 2020, 34(9): 9034-9040.
ZHANG Lili, HUA Sudong, ZHU Huajun, GU Zenghuan, GU Zhong, ZHAO Yihe. Properties of Solidified and Modified Saline Soil by High Magnesium Nickel Slag-Phosphogypsum Based Cementitious Materials. Materials Reports, 2020, 34(9): 9034-9040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040200  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9034
1 Santiago Enamoradoa, José M Abrila, Antonio Delgado, et al. Journal of Hazardous Materials,2014,266,122.
2 Sujiono E H, Setiawan A, Husain H, et al. In: International Conference on Advanced Materials Science & Technology. Shenzhen, China,2016,pp.263.
3 Tao Y, Wu Q, Zhu H, et al. Construction & Building Materials,2017,155,475.
4 Wild S, Kinuthia J M, Jones G I, et al. Engineering Geology,1998,51(1),37.
5 Lv Q, Jiang L, Ma B, et al. Construction & Building Materials,2018,176,68.
6 Marsh B K, Day R L. Cement & Concrete Research,1988,18(2),301.
7 Zhang Y, Pan F, Wu R. Construction & Building Materials,2016,128,1.
8 Shi C, Meyer C,Behnood A. Resources Conservation & Recycling,2008,52(10),1115.
9 Kumer A, Kumar P. Journal of Cleaner Production,2017,162,438.
10 Saha A K, Sarker P K. Construction & Building Materials,2016,123,135.
11 Zhang Z, Zhu Y, Yang T, et al.Journal of Cleaner Production,2017,141,463.
12 Liu Yaowu, Wang Qing, Liu Shouwei, et al. Cold Regions Science and Technology,2019,161,32.
13 Jafari M,Esna-Ashari M. Cold Regions Science & Technology,2012,82,21.
14 Wang C, Lai Y, Yu F, et al. Applied Thermal Engineering,2018,135(4),22.
15 Shen W, Zhou M, Zhao Q. Construction & Building Materials,2007,21(7),1480.
16 Enamorado S, Abril J M, Delgado A, et al. Journal of Hazardous Mate-rials,2014,266(4),122.
17 Hentati O, Abrantes N, Caetano A L, et al. Journal of Hazardous Mate-rials,2015,294,80.
18 Mao Y, Li X, Warren A dick, et al.Journal of Environmental Sciences,2016,45(7),224.
19 Li X, Du J, Gao L, et al. Journal of Cleaner Production,2017,156,137.
20 Papaslioti E M, Pérez-López R, Parviainen A, et al. Marine Pollution Bulletin,2018,127,695.
21 Lemonis N, Tsakiridis P E, Katsiotis N S, et al. Construction & Building Materials,2015,81(11),130.
22 Guo Y, Zhang T, Liu X, et al. Construction & Building Materials,2018,168,805.
23 Cho B S, Lee H H, Choi Y C. Construction & Building Materials,2017,140,293.
24 Shen W, Zhou M, Ma W, et al. Journal of Hazardous Materials,2009,164(1),99.
25 Zhao J, Wang D, Yan P. Construction & Building Materials,2017,140,248.
26 Liu J,Zha F, Xu L, et al. Engineering Geology,2018,246(28),28.
27 Zhang T, Yu, Q Wei J, et al.Cement & Concrete Composites,2011,33(5),543.
28 Mostafa N Y, Brown P W.Thermochimica Acta,2005,435(2),162.
29 Frias. Cement & Concrete Research,2007,37(2),184.
30 Wu B, Ye G. Construction & Building Materials,2015,52,52.
31 Kuzielová E, Žemlika M, Bartoniková E, et al. Construction & Buil-ding Materials,2017,135,306.
32 Zhang W, Yao X, Yang T, et al.Construction & Building Materials,2018,175(30),411.
33 Yang T, Yao X, Zhang Z.Construction & Building Materials,2014,59(6),188.
34 Lothenbach B, Nied D, Hôpital E L, et al. Cement & Concrete Research,2015,77,60.
35 Zhao J, Wang D, Yan P, et al.Construction & Building Materials,2016,113,835.
36 Mao Yumei, et al. Journal of Environmental Sciences,2016,45,224.
[1] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[2] 王建斌, 林巧力, 隋然, 慈文娟, 叶长胜. 高温下熔融SnAgCu-xTi在SiO2表面的润湿行为[J]. 材料导报, 2020, 34(10): 10114-10119.
[3] 李林杰, 马子广. 碳纤维蜂窝夹层结构防雷击铜网胶膜共固化设计及雷击与承载能力试验[J]. 材料导报, 2019, 33(Z2): 121-124.
[4] 王海霞, 段光远, 朱吉萌, 王加稳, 乔春梅. 基于自由基聚合的3D打印材料变形情况表征[J]. 材料导报, 2019, 33(Z2): 573-576.
[5] 向科炜, 林金斌. 水性光固化树脂研究进展[J]. 材料导报, 2019, 33(Z2): 577-579.
[6] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[9] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[10] 赵红涛, 王树民, 刘志江, 张曼. 磷石膏矿化固定CO2制备高纯高白CaCO3[J]. 材料导报, 2019, 33(18): 3031-3034.
[11] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[12] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[13] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[14] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[15] 杨卓鸿, 叶希韵, 黄家健, 梁斌, 邝少杰, 袁腾. 桐油基紫外光固化材料体系构建的研究进展[J]. 材料导报, 2018, 32(21): 3831-3838.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed