Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10114-10119    https://doi.org/10.11896/cldb.19040036
  金属与金属基复合材料 |
高温下熔融SnAgCu-xTi在SiO2表面的润湿行为
王建斌1, 林巧力1, 隋然2, 慈文娟1, 叶长胜1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州工业学院材料科学与工程学院,兰州 730050
Wetting Behavior of Molten SnAgCu-xTi on SiO2 Surface Under High Temperature
WANG Jianbin1, LIN Qiaoli1, SUI Ran2, CI Wenjuan1, YE Changsheng1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineeering, Lanzhou Institute of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 6133KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用改良座滴法研究了高真空、800~900 ℃条件下熔融Sn0.3Ag0.7Cu(SAC)-xTi (x=0%、1%、3%,质量分数)在SiO2表面的润湿行为。研究结果表明:在SAC中添加少量的Ti后,可以显著提高SAC在SiO2表面的润湿性。当Ti浓度为3%时,Ti未被完全溶解,这是因为随着Ti浓度的增加,在Ti表面会形成一层高熔点的Sn-Ti金属间化合物,进而阻碍Ti的进一步溶解。液固界面反应产物为Ti5Si3和TiO,铺展动力学可用反应产物控制模型描述;在铺展过程中,快速铺展阶段首先析出Ti5Si3和TiO,线性铺展阶段仅析出TiO。该体系的最终润湿性取决于界面反应产物和界面上Ti-O吸附的共同作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王建斌
林巧力
隋然
慈文娟
叶长胜
关键词:  改良座滴法  高温  润湿行为  氧化物  界面  连接    
Abstract: The wetting of SiO2 by molten Sn0.3Ag0.7Cu(SAC)-xTi (x=0wt%, 1wt%, 3wt%) was studied by using the modified sessile drop method at 800—900 ℃ under a high vacuum. The small addition of Ti into SAC alloy can improve wettability, significantly. Because the Sn-Ti intermetallics with high melting point covered Ti addition and blocked further dissolution of Ti, and thus Ti cannot be dissolved completely when the nominal concentration of Ti was 3wt%. The reaction products at liquid/solid interface are Ti5Si3 and TiO. The spreading dynamics can be described by reaction product control model. The spreading may be coupled firstly with the precipitation of Ti5Si3 and TiO together meanwhile be affected by the dissolution of Ti addition, and then the precipitation of TiO alone. The final wettability was determined both by the wetting character of reaction products and also Ti-O adsorption at interface.
Key words:  modified sessile drop method    high temperature    wetting behavior    oxides    interface    joining
                    发布日期:  2020-04-26
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51665031; 51675256);甘肃省基础研究创新计划(17JR5RA107);甘肃省高校协同创新团队建设基金(2017C-07);省杰出青年科学家基金(1506RJDA087)
通讯作者:  林巧力,兰州理工大学材料科学与工程学院教授、硕士研究生导师。机械工程学会焊接青委会委员,国家自然科学基金委工程科学二处基金项目评议专家,IIW国际焊接工程师认证专业考官。先后主持了国家自然科学基金(两项)、教育部博士点基金、甘肃省杰出青年基金及校企合作横向课题等7项,参与国家自然科学基金重点项目与面上项目3项。以第一作者或通讯联系人身份发表SCI收录论文20余篇,EI收录4篇。所发表的论文包括工程技术类顶尖杂志Acta Mater.(国际冶金领域排名第一)等,涵盖Elsevier、 Wiley、 Springer三大主流数据库,作为评审专家多次受邀于国际知名学术期刊J. Alloys Compd., Composite B, JMR,Mater. Des.等。The Scientific World J.,Scanning特刊客座编辑。主要研究金属/陶瓷的高温润湿性及异种金属连接过程中的界面行为。lqllinqiaoli@163.com   
作者简介:  王建斌,2017年7月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,目前在林巧力教授的指导下进行项目研究。主要从事金属/陶瓷界面润湿性领域的研究工作。
引用本文:    
王建斌, 林巧力, 隋然, 慈文娟, 叶长胜. 高温下熔融SnAgCu-xTi在SiO2表面的润湿行为[J]. 材料导报, 2020, 34(10): 10114-10119.
WANG Jianbin, LIN Qiaoli, SUI Ran, CI Wenjuan, YE Changsheng. Wetting Behavior of Molten SnAgCu-xTi on SiO2 Surface Under High Temperature. Materials Reports, 2020, 34(10): 10114-10119.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040036  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10114
1 Chen L J. Silicide technology for integrated circuits in EMIS processing series 5, The Institution of Engineering and Technology Press, UK, 2009.
2 Sebastian M T, Krupka J, Arun S, et al. Materials Letters, 2018, 232, 92.
3 Luo Z P. Acta Materialia, 2006, 54(1), 47.
4 Rajan T P D, Pillai R M, Pai B C. Journal of Materials Science, 1998, 33(14), 3491.
5 Eustathopoulos N, Nicholas M G, Drevet B. Wettability at high temperatures, Elsevier Press, UK, 1999.
6 Parks G A. Journal of Geophysical Research:Solid Earth, 1984, 89, 3997.
7 Espié L, Drevet B, Eustathopoulos N. Metallurgical and Materials Tran-sactions A(Physical Metallurgy and Materials Science), 1994, 25(3), 599.
8 Xin C L, Li N, Jia J H, et al. Ceramics International, 2018, 44(15), 17784.
9 Ma Q, Li Z R, Niu H W, et al. Vacuum, 2018, 157, 124.
10 Lin J H, Ba J, Cai Y F, et al. Vacuum, 2017, 145, 241.
11 Zhang L X, Sun Z, Chang Q, et al. Ceramics International, 2019, 45,1698.
12 Cornelius B, Treivish S, Rosenthal Y, et al. Microelectronics Reliability, 2017, 79, 175.
13 Sun Z, Zhang L X, Hao T D. Ceramics International, 2018, 44, 15809.
14 Massalski T B. Binary phase diagram (CD-ROM), ASM International, USA, 1996.
15 Naidich Y V, Zhuravlev V S J R. Refractories and Industrial Ceramics, 1974, 15 (1), 55.
16 Yang D L, Qiu F, Zhao Q L, et al. Materials Science and Engineering: A, 2017, 688(Complete), 459.
17 Maa J S, Lin C J, Liu J H, et al. Thin Solid Films, 1979, 64(3),439.
18 Kräutle H, Nicolet M A, Mayer J W. Physica Status Sollidi, 1973, 20(1), K33.
19 Saiz E, Tomsia A P. Current Opinion Solid State & Materials Science, 2005, 9(4-5), 167.
20 Eustathopoulos N. Current Opinion Solid State & Materials Science, 2005, 9(4-5), 152.
21 Naidich Y. Current Opinion Solid State & Materials Science, 2005, 9(4-5), 161.
22 Aksay I A, Hoge C E, Pask J A. Journal of Physics Chemistry, 1974, 78, 1178.
23 Eustathopoulos N, Drevet B. Journal de Physsique III, 1994,4(10), 1865.
24 Kritsalis P, Coudurier L, Eustathopoulos N. Journal of Materials Science, 1991, 26(12), 3400.
25 Li J G. Ceramics International, 1994, 20(6), 391.
26 Kang J R, Song X G, Hu S P, et al. Metallurqical and Materials Transactions A, 2017, 48(12), 5870.
27 Bian H, Zhou Y, Song X, et al. Ceramics International, 2019, 45(6), 6730.
28 Barin I. Thermochemical data of pure substances, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1995.
29 Beyers R, Sinclair R, Thomas M E. Journal of Vacuum Science & Technology B, 1984, 2(4), 781.
30 Birdi K S. Handbook of surface and colloid chemistry, CRC Press, USA, 2009.
31 Gąsior W, Moser Z, Dębski A, et al. International Journal of Thermophysics, 2010, 31(3), 502.
32 Gąsior W, Dębski A. Journal of Mining and Metallurgy Section: B, 2012, 48(3), 427.
[1] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[2] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[3] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[4] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[5] 刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122.
[6] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[7] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[8] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[9] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[10] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[11] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[12] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[13] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[14] 李啸轩, 张强, 朱春城. 以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究[J]. 材料导报, 2020, 34(4): 4032-4036.
[15] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed