Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7115-7122    https://doi.org/10.11896/cldb.19050192
  金属与金属基复合材料 |
铜/铝双金属复合材料研究新进展
刘国平, 王渠东, 蒋海燕
上海交通大学轻合金精密成型国家工程研究中心;上海交通大学金属基复合材料国家重点实验室;上海交通大学材料科学与工程学院,上海 200240
New Research Progress on Copper/Aluminum Bimetallic Composites
LIU Guoping, WANG Qudong, JIANG Haiyan
National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University; State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University; School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 2615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双金属复合材料能综合各基体金属的优异性能,弥补单一金属的不足,具有性价比高、成本低等特点,是目前材料研究领域的热点。铜/铝双金属复合材料作为一种典型的双金属复合材料,综合利用铜的高导电、高导热,以及铝的质轻、易焊接、低成本等优点,广泛应用于电力、热传输、汽车等领域,受到国内外研究人员的广泛关注。
   然而,制备铜/铝双金属复合材料的主要难点包括:(1)铜、铝两种材料均易氧化,且形成的氧化膜难以去除;(2)界面易形成硬脆的金属间化合物,危害铜/铝双金属复合材料的性能。近年来,研究人员不断完善现有工艺和开发新工艺,对界面形成机理、金属间化合物的生长调控、组元金属之间的尺寸与性能的匹配、变形与热处理协调、性能表征等方面进行了大量研究,并取得了丰富的成果。
   研究人员通过优化工艺参数、采用物理和化学方法控制界面金属间化合物的生长,提高界面结合强度;采用原位表征手段观察界面的相演变,探究界面结合机理;结合有限元模拟技术,开展铜/铝双金属复合材料变形、热处理和缺陷预测等方面研究,指导实际生产;综合评价铜/铝双金属复合材料的力学、电学、热学和耐腐蚀等性能,不断挖掘其应用潜力。
   本文归纳了铜/铝双金属复合材料的制备工艺,重点评析了组合复合工艺在制备铜/铝双金属复合材料的应用。综述了铜/铝双金属复合材料在界面组成、原位观察界面相的演变、界面性能评价和界面结合性能提升等方面的研究新进展,并预测了铜/铝双金属复合材料未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘国平
王渠东
蒋海燕
关键词:  铜/铝复合  界面  金属间化合物  热性能  结合性能    
Abstract: Bimetallic composite is a hotspot in material research because it integrates the excellent properties of various matrix metals and makes up for the deficiency of single metal. As a typical bimetallic composite, Cu/Al bimetallic composite comprehensively utilizes the advantages of high conductivity and heat conduction of copper, as well as light weight, easy welding and low cost of aluminum, which is widely used in electric po-wer, heat transmission, automobile and other fields, attracting extensive attentions of researchers at home and abroad.
However, the main difficulties in preparing Cu/Al bimetallic composites include: (1) both copper and aluminum materials are easy to be oxidized, and the formed oxidation film is difficult to be removed; (2) the interface is easy to form hard and brittle intermetallic compounds, which will harm the performance of Cu/Al bimetallic composites. Therefore, in recent years, researchers have made a lot of researches including how to improve the existing processes and develop new processes; exploring the interface formation mechanism, growth regulation of intermetallic compounds, size and performance matching between component metals, deformation and heat treatment coordination, performance characte-rization and other aspects.
The growth of intermetallic compounds is controlled by optimizing process parameters and physical and chemical methods to improve interfacial bonding strength. In-situ characterization is used to observe the phase evolution of the interface and explore the interface bonding mechanism. Combined with the finite element simulation technology, the research on deformation, heat treatment and defect prediction of Cu/Al bimetallic composite is carried out to guide the actual production. The mechanical, electrical, thermal and corrosion resistance properties of Cu/Al bimetallic composites are evaluated comprehensively, and their application potential is explored continuously.
In this paper, the preparation process of Cu/Al bimetal is summarized, and the application of combined bonding process is highly reviewed. The research progress of Cu/Al bimetallic composites in the interfacial composition, evolution of interface phase observed by in-situ equipment, evaluation of interface performance and improvement of interfacial bonding performance are reviewed, and the future research direction of Cu/Al bimetallic composites is forecasted.
Key words:  copper/aluminum clad    interface    intermetallic compounds    thermal properties    bonding strength
                    发布日期:  2020-04-10
ZTFLH:  TB331  
基金资助: 国家自然科学基金委面上项目(51674166)
通讯作者:  wangqudong@sjtu.edu.cn   
作者简介:  刘国平,上海交通大学博士研究生,主要研究方向为层状金属复合材料。
王渠东,教授,博士生导师。现在上海交通大学轻合金精密成型国家工程研究中心工作。研究方向包括:轻合金及其成形技术;材料制备与成形新技术;金属基复合材料。
引用本文:    
刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122.
LIU Guoping, WANG Qudong, JIANG Haiyan. New Research Progress on Copper/Aluminum Bimetallic Composites. Materials Reports, 2020, 34(7): 7115-7122.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050192  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7115
1 Sasaki T T, Morris R A, Thompson G B, et al. Scripta Materialia, 2010, 63(5), 488.
2 Jin T, Li G, Cao Y, et al. Energy and Buildings, 2015, 97, 1.
3 Liu T, Liu P, Wang Q D. Material Reports A:Review Papers, 2013, 27(10), 1(in Chinese).
刘腾, 刘平, 王渠东. 材料导报:综述篇, 2013, 27(10), 1.
4 Liu S Y, Wang A Q, Lv S J, et al. Material Reports A:Review Papers, 2018, 32(5), 828(in Chinese).
刘帅洋, 王爱琴, 吕世敬, 等. 材料导报:综述篇, 2018, 32(5),828.
5 Vodnick A, Willis R, Kaiser J. In:31st Proceedings of the Thermal Measurement, Modeling & Management Symposium. San Jose, CA, USA, 2015.
6 Li X B, Zu G Y, Wang P. Materials Science and Engineering: A, 2014, 612, 89.
7 Hoseini Athar M M, Tolaminejad B. Materials & Design, 2015, 86, 516.
8 Chen S, Ke F, Zhou M, et al. Acta Materialia, 2007, 55(9), 3169.
9 Sapanathan T, Khoddam S, Zahiri S H, et al. Materials & Design, 2014, 57, 306.
10 Lee S, Lee M G, Lee S P, et al. Transactions of Nonferrous Metals Society of China, 2012, 22, s645.
11 Zhang W, Shen Y, Yan Y, et al. Materials Science and Engineering: A, 2017, 690, 355.
12 Kocich R, Kuncˇická L, Machácˇková A, et al. Materials & Design, 2017, 123, 137.
13 Oh-ishi K, Edalati K, Kim H S, et al. Acta Materialia, 2013, 61(9), 3482.
14 Honarpisheh M, Asemabadi M, Sedighi M. Materials & Design, 2012, 37, 122.
15 Yu H, Lu C, Tieu A K, et al. Philosophical Magazine, 2018, 98(17), 1537.
16 Rahdari M, Reihanian M, Baghal S M L. Materials Science and Enginee-ring: A, 2018, 738, 98.
17 Liu G P, Wang Q D, Zhang L, et al. Metallurgical and Materials Tran-sactions A, 2019, 50(1), 401.
18 Arturo B P, Hernández G, Miguel A, et al. Advanced Materials Research, 2014, 976, 8.
19 Chang Q, Xie J, Mao A, et al. Metals, 2018, 8(10), 770.
20 Liu T, Wang Q D, Sui Y D, et al. Materials & Design, 2016, 89, 1137.
21 Zhang Y, Song K X, Liu Y M, et al. Special Casting & Nonferrous Alloys, 2014, 34(1), 101(in Chinese).
张亚, 宋克兴, 刘亚民, 等. 特种铸造及有色合金, 2014, 34(1), 101.
22 Wang T M, Cao F, Zhou P, et al. Journal of Alloys and Compounds, 2014, 616, 550.
23 Liu Y H, Liu H F, Yu S R. Chinese Journal of Mechanical Engineering, 2000, 36(7), 81(in Chinese).
刘耀辉, 刘海峰, 于思荣. 机械工程学报, 2000, 36(7), 81.
24 Kaysser W A, Petzow G. Powder Metallurgy, 1985, 28(3), 145.
25 Savitskii A P. Proceedings of the Materials Science Forum, 2008, 575-578, 1477.
26 Huang H G, Ji C, Dong Y K, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(3), 623(in Chinese).
黄华贵, 季策, 董伊康, 等. 中国有色金属学报, 2016, 26(3), 623.
27 Su Y J, Liu X H, Huang H Y, et al. Metallurgical and Materials Tran-sactions A, 2011, 42(13), 4088.
28 Chen S Y, Chang G W, Yue X D, et al. Transactions of Nonferrous Me-tals Society of China, 2016, 26(8), 2247.
29 Liu G P, Wang Q D, Zhang L, et al. Metallurgical and Materials Tran-sactions A, 2018, 49, 661.
30 Xie J X, Wu C J, Liu X F, et al. Materials Science Forum, 2007, 539-543, 6.
31 Zhang J Y, Li H Z, Chu D, et al. Foundry, 2017, 66(4), 386(in Chinese).
张建宇, 李河宗, 初娣, 等. 铸造, 2017, 66(4), 386.
32 Liang H, Xue Z, Wu C, et al. Acta Metall Sinica, 2010, 23(3), 206.
33 Zhang J Y, Yao J J, Cui X Y, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(5), 1275(in Chinese).
张建宇, 姚金金, 曾祥勇, 等. 中国有色金属学报, 2014, 24(5), 1275.
34 尚郑平, 尚爱平, 王茜, 等. 中国专利, CN 106670235 A, 2017.
35 Gao H T, Liu X H, Qi J L, et al. Journal of Materials Processing Technology, 2018, 251, 1.
36 张坚华.中国专利, CN 101633105 A, 2010.
37 Zhang H, Xie J P, Shang Z P, et al. Journal of Henan University of Scie-nce and Technology: Nature Science, 2015, 36(1), 9(in Chinese).
张衡, 谢敬佩, 尚郑平, 等. 河南科技大学学报:自然科学版, 2015, 36(1), 9.
38 Wu Y F, Liu X H, Xie J X. The Chinese Journal of Nonferrous Metals, 2013, 23(1), 191(in Chinese).
吴永福, 刘新华, 谢建新. 中国有色金属学报, 2013, 23(1), 191.
39 于隆祥, 曹代河, 舒旭东, 等. 中国专利, CN 101645333 A, 2010.
40 Zhao S J. Casting-cold extresion forming technology study and microstructure analysis of copper/aluminum clad composite. Master’s Thesis, Yanshan University, 2010.
赵双敬. 铜包铝线铸造-冷挤压成形工艺研究及微观组织分析. 硕士学位论文, 燕山大学, 2010.
41 Mamalis A G, Vaxevanidis N M, Szalay A, et al. Journal of Materials Processing Technology, 1994, 44(94), 99.
42 Asemabadi M, Sedighi M, Honarpisheh M. Materials Science and Engineering: A, 2012, 558, 144.
43 Gueydan A, Domengès B, Hug E. Intermetallics, 2014, 50, 34.
44 Massalski T. Journal of Phase Equilibria, 1980, 1(1), 27.
45 Zare G R, Divandari M, Arabi H. Materials Science and Technology, 2013, 29(2), 190.
46 Wang Q, Li D G, Wang K, et al. Scripta Materialia, 2007, 56(6), 485.
47 Huang H G, Ye L F, Liu W W, et al. Hot Working Technology, 2015, 44(24), 127(in Chinese).
黄华贵, 叶丽芬, 刘文文, 等. 热加工工艺, 2015, 44(24), 127.
48 Yang Q L, Chen Y Y, Wu X, et al. Acta Physica Sinica, 2015, 64(21), 389(in Chinese).
杨庆龄, 陈奕仪, 吴幸, 等. 物理学报, 2015, 64(21), 389.
49 Chen K, Meng W J, Eastman J A. Metallurgical and Materials Transactions A, 2014, 45(9), 3892.
50 Yousefi Mehr V, Toroghinejad M R, Rezaeian A. Materials & Design, 2014, 53, 174.
51 Kim W N, Hong S I. Materials Science and Engineering: A, 2016, 651, 976.
52 Kim I K, Hong S I. Materials & Design, 2013, 47, 590.
53 Lee K S, Lee S E, Kwon Y N. Transactions of Nonferrous Metals Society of China, 2014, 24, s36.
54 Lee T, Lee Y, Park K, et al. Journal of Materials Processing Technology, 2013, 213(3), 487.
55 Sun C, Li, Zhou D J. Material Reports A:Review Papers, 2017, 31(11), 59(in Chinese)
孙畅, 李龙, 周德敬. 材料导报:综述篇, 2017, 31(11), 59.
56 Zhang J, Liang W, Liu Y, et al. Materials Science and Engineering: A, 2014, 590, 314.
57 Jamaati R, Toroghinejad M R. Materials Science and Engineering: A, 2010, 527(9), 2320.
58 Chen C Y, Hwang W S. Materials Transactions, 2006, 47, 1232.
59 Danesh Manesh H, Karimi Taheri A. Materials & Design, 2003, 24(8), 617.
60 Tavassoli S, Abbasi M, Tahavvori R. Materials & Design, 2016, 108, 343.
61 Sheng L Y, Yang F, Xi T F, et al. Composites Part B: Engineering, 2011, 42(6), 1468.
62 Breedis J F, Fister J C. U.S. patent application, US 4498121, 1985.
63 Zhao J L, Jie J C, Chen F, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(6), 1659.
64 Yue A N, Peng K, Zhou L P, et al. Material Reports A:Review Papers, 2013, 27(9), 117(in Chinese).
岳安娜, 彭坤, 周灵平, 等. 材料导报:综述篇, 2013, 27(9), 117.
65 Wang M, Wang P, Chang D X, et al. Advanced Materials Research, 2014, 887-888, 43.
66 Xu B, Tong W P, Liu C Z, et al. Journal of Materials Science & Techno-logy, 2011, 27(9), 856.
67 Braunovic M, Aleksandrov N. In:Proceedings of the 38th IEEE Holm Conference on Electrical Contacts, 1992, pp.25.
68 Wang T, Li S, Ren Z, et al. Materials Letters, 2019, 234, 79.
69 Willis R P, Mello K S, Kaiser J G. U.S. patent application, US 8999081, 2015.
70 Sapanathan T, Khoddam S, Zahiri S H. Journal of Alloys and Compounds, 2013, 571, 85.
71 Shin H S, de Leon M. Journal of Materials Processing Technology, 2017, 241, 141.
72 Abbasi M, Taheri A K, Salehi M T. Journal of Alloys and Compounds, 2001, 319, 233.
73 Zhang J, Wang B, Chen G, et al. Transactions of Nonferrous Metals So-ciety of China, 2016, 26(12), 3283.
74 Huang H J, Jia Z, Yuan X G, et al. Special Casting & Nonferrous Alloys, 2007, 27(5), 354(in Chinese).
黄宏军, 贾真, 袁晓光, 等. 特种铸造及有色合金, 2007, 27(5), 354.
75 Yang Z, Mi X J, Xie H F, et al. Materials Science Forum, 2017, 898, 1015.
76 Xu M Q. Fabrication and properties of Cu/Mo/Cu laminated composite substrates. Master’s Thesis, Harbin Institute of Technology, 2014.
徐明琦. Cu/Mo/Cu层状复合基板制备及性能研究. 硕士学位论文, 哈尔滨工业大学, 2014.
77 Zhang X Y. Microstructure and properties of Mg/Al bilayered sheet processed by high pressure torsion. Master’s Thesis, Harbin Institute of Technology, China, 2016.
张星宇. 高压扭转(HPT)制备Mg/Al复合板的显微组织与性能研究. 硕士学位论文, 哈尔滨工业大学, 2016.
78 Park S, Nagao S, Sugahara T, et al. Journal of Materials Science: Materials in Electronics, 2015, 26(9), 7277.
79 Wang B, Liu P, Liu X K, et al. Functional Materials, 2016, 47(12), 12104.
王冰, 刘平, 刘新宽, 等. 功能材料, 2016, 47(12), 12104.
80 Kang G T, Hong S I. Advanced Materials Research, 2015, 1102, 55.
81 Acarer M. Electrical. Journal of Materials Engineering and Performance, 2012, 21(11), 2375.
82 Sarvghad-Moghaddam M, Parvizi R, Davoodi A, et al. Corrosion Science, 2014, 79, 148.
83 Lall P, Deshpande S, Nguyen L, et al. Proceedings of the Prognostics and Health Management. Beijing, 2015, pp.1.
84 Huang M L, Kang N, Zhou Q, et al. Journal of Materials Science & Technology, 2012, 28(9), 844.
85 Uno T, Yamada T. In:60th Proceedings of the Electronic Components and Technology Conference. Las Vegas, NV, USA, 2010, pp.1725.
[1] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[2] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[3] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[4] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[5] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[6] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[7] 石全举, 顾振杰, 周圣丰. 激光原位合成NiTi基复合涂层的微结构特征与耐蚀性能[J]. 材料导报, 2020, 34(2): 2110-2116.
[8] 薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
[9] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[10] 彭成, 梁爽, 黄福祥, 钟明君, 冉小杰. 键合丝键合界面研究进展[J]. 材料导报, 2019, 33(Z2): 501-504.
[11] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[12] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[13] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[14] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[15] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed