Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7123-7129    https://doi.org/10.11896/cldb.17120109
  金属与金属基复合材料 |
材料在铝液中熔蚀-磨损行为的研究进展
肖华强1, 陈禹伽1, 陈维平2, 何佳容1, 赵思皓1
1 贵州大学机械工程学院,贵阳 550025;
2 华南理工大学广东省金属新材料制备与成形重点实验室,广州 510640
Research Progress on Corrosion-Wear Behavior of Materials in Molten Aluminum
XIAO Huaqiang1, CHEN Yujia1, CHEN Weiping2, HE Jiarong1, ZHAO Sihao1
1 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China;
2 Guangdong Key Laboratory for Advanced Metallic Materials Processing,South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 3025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在冶金、化工、航空航天及汽车等领域,高温腐蚀性环境中承受动载的关键零部件往往因为腐蚀-磨损的作用而失效,从而造成巨大的经济损失。当前,对于腐蚀-磨损的研究多集中于材料在腐蚀性气体、溶液或颗粒冲刷条件下的加速流失,而对材料在高温金属熔体中的熔蚀-磨损失效行为研究鲜有报道,对材料在高温金属熔体中腐蚀失效及摩擦磨损失效的交互作用尚不明确。铝及其合金产量居有色金属材料之首,被广泛应用于建筑、交通、能源、航空航天、电子等领域。然而铝熔体是腐蚀性最强的金属液之一,铝工业如冶金、成形及热浸镀等生产过程中的一些关键零部件往往因熔蚀-磨损而失效破坏。目前大量使用的仍是高合金的耐磨类材料如模具钢,材料价格昂贵、使用寿命很短,只能依靠频繁更换部件来维持生产。因此迫切需要开发耐铝液熔蚀-磨损新材料,满足铝工业生产应用的需求。
   然而,由于高温金属熔体这一腐蚀介质的特殊性,对材料高温熔蚀-磨损行为的研究鲜有报道。这一方面是由于缺乏专用的设备对材料的熔蚀-磨损行为进行测试表征,另一方面则是由于腐蚀界面存在复杂的冶金物理化学反应,而关于熔蚀和磨损行为的交互作用机理尚不明确。目前对于材料在铝液中熔蚀-磨损行为的研究较少,部分研究主要集中于铝合金液态成形过程中模具的冲蚀-磨损行为及材料替代,材料在铝液中的熔蚀-磨损机理研究则尚处于空白。
   近两年,在开发新型高温金属熔体腐蚀-磨损试验系统的基础上,学者实现了对材料在高温金属铝液中熔蚀-磨损行为的研究,并进行了大量的材料筛选。研究表明,常用的金属材料在铝液中的熔蚀-磨损行为主要受界面金属间化合物的生成速度、性质及其与基体界面的结合情况的影响。材料因熔蚀-磨损导致的流失远大于纯腐蚀与纯磨损导致的材料流失之和,说明材料在铝液中的熔蚀-磨损失效并不是腐蚀和磨损行为的简单叠加,其主要失效机理在于熔蚀和磨损的交互作用。对常用的H13钢材料而言,其在典型工况下的熔蚀-磨损交互作用率达90%以上。在材料开发方面,目前大多依靠单一的腐蚀试验以及高温摩擦磨损试验来收集数据,对耐铝液熔蚀-磨损材料的研究也主要集中在铁基合金组织调控、难熔金属应用以及表面处理技术这三个方面。近年来发展起来的金属间化合物基复合材料也为耐铝液熔蚀-磨损新材料的开发开辟了新的思路。
   本文简要介绍了材料在铝液中的熔蚀-磨损失效行为,指出熔蚀与磨损的交互作用是导致材料或零件失效的关键原因,在此基础上提出了对耐铝液熔蚀-磨损材料的性能要求。基于对国内外耐铝液熔蚀-磨损材料研究进展的综述,提出了耐铝液熔蚀-磨损材料未来的发展方向和研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖华强
陈禹伽
陈维平
何佳容
赵思皓
关键词:  熔蚀-磨损  铝液  交互作用机理  金属间化合物    
Abstract: In the field of metallurgical, chemical, aerospace and automotive, corrosion-wear damage to the key components used in high temperature corrosive environment under dynamic loading often results in tremendous economic losses. Many researches have focused on the accelerated degradation of materials in corrosive gas, solution or particle erosion conditions. However, the corrosion-wear behavior of materials in high temperature metal melt has been rarely reported, and the synergy mechanism between corrosion and wear is still inexplicit. Aluminum and its alloys are widely used in buildings, transportation, energy, aerospace, electronics and other areas. However, aluminum melt is one of the most corrosive metallic fluids. Some key parts in the production process of aluminum industry, such as metallurgy, forming and hot dip, are often damaged by corrosion and wear. At present, a large number of wear-resisting materials of high alloy, such as die steel, are still used, but they are costly and have a short service life. Production can only be maintained by frequent replacement of parts. Therefore, it is urgent to develop new liquid-aluminum-resistant corrosion and wear materials to meet the needs of aluminum industrial production and application.
However, due to the particularity of high temperature metal melt as a corrosive medium, few studies have been reported on the corrosion behavior of high temperature metal melt. On the one hand, due to the lack of special equipment to test and characterize the corrosion and wear behaviors of materials. On the other hand, due to the complex metallurgical physical and chemical reactions at the corrosion interface, the interaction mechanism between corrosion and wear behaviors is still unclear. At present, for the studies of the material corrosion behavior and mechanism in the liquid aluminum are more, while that of the material corrosion and wear behavior in the liquid aluminum are few. Some researches focused on the erosion and wear behavior in aluminum alloy molten shaping process and material substitution. The study of material corrosion-wear mechanism in liquid aluminum is still in the blank.
In the past two years, on the basis of developing a new corrosion and wear of high-temperature metal melt test system, the corrosion and wear behavior of materials in high-temperature aluminum liquid has been studied, and a large number of materials have been screened. It is found that the corrosion and wear resistance of the commonly used metal materials is depend on the formation rate and characterization of intermetallic compound layer, as well as the combination between the substrate and intermetallic zone. The amount of material erosion-wear loss is much larger than the sum of pure corrosion and pure wear material loss indicates that the corrosion-wear failure of material in aluminum liquid is not a simple superposition of corrosion and wear behavior, and the main failure mechanism lies in the synergy mechanism between corrosion and wear. For the commonly used H13 steel materials, the ratio of corrosion-wear interaction under typical working conditions is more than 90%. In the aspect of material development, data collecting is relied on single corrosion test or high temperature friction and wear test. The development of materials with excellent corrosion-wear resistance in molten aluminum mainly focus on three aspects: microstructure regulation of ferrous alloy, application of refractory metals and surface treatment technology. Intermetallic matrix composites developed in recent years have also opened up new ideas for the development of new materials with excellent corrosion-wear resistance in molten aluminum.
This paper briefly introduces the corrosion and wear failure behavior of materials in aluminum liquid, and points out that the interaction between corrosion and wear is the key reason for the failure of materials or parts. On this basis, the performance requirements of materials with excellent corrosion-wear resistance in molten aluminum are put forward. Based on the review of the research progress, the paper puts forward the future development direction and research focus of these new materials.
Key words:  corrosion-wear    molten aluminum    synergy mechanism    intermetallics
                    发布日期:  2020-04-10
ZTFLH:  TB37  
基金资助: 国家自然科学基金(51605106);贵州省联合基金(20167437);广东省金属新材料制备与成形重点实验室开放基金(GJ201608)
通讯作者:  xhq-314@163.com   
作者简介:  肖华强,贵州大学机械工程学院副教授、硕士研究生导师。2006年本科毕业于太原理工大学材料科学与工程学院,2013年在华南理工大学国家金属材料近净成形工程技术研究中心材料加工工程专业取得博士学位。主要从事金属基复合材料的研究工作。
引用本文:    
肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
XIAO Huaqiang, CHEN Yujia, CHEN Weiping, HE Jiarong, ZHAO Sihao. Research Progress on Corrosion-Wear Behavior of Materials in Molten Aluminum. Materials Reports, 2020, 34(7): 7123-7129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120109  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7123
1 Liu Y, Mol J M C, Janssen G C A M. Scripta Materialia, 2015, 107, 92.
2 Guzmán A M, Martínez D I, González R. Engineering Failure Analysis, 2014, 46(46),188.
3 Dearnley P A, Mallia B. Wear, 2013, 306(1-2),263.
4 Zhang X M, Chen W P. Transactions of Nonferrous Metals Society of China, 2015, 25(6),1715.
5 Kim H J, Yoon B H, Lee C H. Wear, 2003, 254(5-6),408.
6 Chen W P, Wu J, Luo H F. Special Casting & Nonferrous Alloys, 2012, 32(10),883(in Chinese).
陈维平, 吴晶, 罗洪峰. 特种铸造及有色合金, 2012, 32(10), 883.
7 Zhang X, Chen W, Luo H, et al. Corrosion Science, 2017, 125(8),20.
8 Xiao H Q,Chen W P.Transactions of Nonferrous Metals Society of China, 2017, 27(1),89(in Chinese).
肖华强,陈维平. 中国有色金属学报, 2017, 27(1), 89.
9 Chen W P, Fang S C, Zeng Y, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(11), 3127(in Chinese).
陈维平, 方思聪, 曾勇,等. 中国有色金属学报, 2013, 23(11), 3127.
10 Zhu Y, Schwam D, Wallace J F, et al. Materials Science and Enginee-ring: A, 2004, 379 (1), 420.
11 Wu J. The screening experiments of corrosion-wear resistant metal mate-rials in molten aluminum and device development. Master’s Thesis, South China University of Technology, China, 2012(in Chinese).
吴晶. 耐铝液腐蚀-磨损金属材料的筛选及其试验设备的研制.硕士学位论文,华南理工大学,2012.
12 Xiao H, Chen W, Liu Z. Transactions of Nonferrous Metals Society of China, 2012, 22 (9),2320.
13 Balloy D, Tissier J C, Giorgi M L, et al.Metallurgical & Materials Tran-sactions A, 2010, 41(9), 2366.
14 Gao Z Y, Zhang J L, Wu W X, et al. Foundry, 2009, 58(9),937(in Chinese).
高占勇,张金龙,武文霞,等.铸造,2009, 58(9),937.
15 Chen W P, Zhu S L, Gong J L, et al. Journal of Hunan University, 1991, 18 (4), 71(in Chinese).
陈维平, 朱士鎏, 龚建森,等. 湖南大学学报, 1991, 18 (4), 71.
16 Yu Y, Xie H D. Corrosion & Protection, 2012, 33(3), 216(in Chinese).
余岩, 谢海东. 腐蚀与防护, 2012, 33(3), 216.
17 Zhang X, Li X, Chen W. Surface and Interface Analysis, 2015, 47 (6), 648.
18 Ling Z, Chen W, Lu T, et al. Wear, 2019, 430-431, 81.
19 Castro M N I, Robles J M A, Hernandez D A C, et al. Ceramics International, 2010, 36(4),1205.
20 Castro M N I, Robles J M A, Hernandez D A C, et al. Ceramic International, 2016, 42(2), 3491.
21 Castro M N I, Robles J M A, Hernandez D A C, et al. Journal of the European Ceramic Society, 2015, 35(15), 4287.
22 Adabifiroozjaei E, Koshy P, Sorrell C C. Journal of the European Cera-mic Society, 2012, 32(8),1463.
23 AdabiFiroozjaei E, Koshy P, Sorrell C C. Journal of the European Ceramic Society, 2013, 33(6), 1067.
24 Wang W J, Lin J P, Wang Y L, et al. Rare Metal Materials and Engineering, 2007, 36 (6), 994(in Chinese).
王文俊, 林均品, 王艳丽, 等. 稀有金属材料与工程, 2007, 36 (6), 994.
25 Wang W J, Lin Y L, Wang J P, et al. Journal of Iron and Steel Research, 2007, 19 (3), 1(in Chinese).
王文俊, 王艳丽, 林均品, 等.钢铁研究学报, 2007, 19 (3), 1.
26 Geng G Q, Guan L, Li N, et al. Hot Working Technology, 2006, 35 (6), 14(in Chinese).
耿刚强, 官磊, 李宁, 等. 热加工工艺, 2006, 35 (6), 14.
27 Karger-Kocsis J, Felhös D, Xu D, et al. Wear, 2008, 265(3-4),292.
28 Zhang X M. Research on the corrosion-wear resistance of the novel Fe-Cr-B cast steel and their three-dimensional interconnected ZrO2 reinforced metal matrix composites in molten aluminum. Ph.D. Thesis, South China University of Technology, China, 2015(in Chinese).
张先满. 新型Fe-Cr-B铸钢及其三维网络结构ZrO2增强复合材料的铝液腐蚀-磨损研究.博士学位论文,华南理工大学, 2015.
29 Rio E D, Nash J M, Williams J C, et al. Materials Science & Engineering A, 2007, 463(1-2),115.
30 James G, William L, Peters K M. International Journal of Applied Ceramic Technology, 2008, 5(3),265.
31 Chen W, Xiao H, Fu Z, et al. Materials and Design, 2013, 49,929.
32 Zeng Y. The preparation of Ti3AlC2/TiAl3 Composites and their corrosion-wear performance to liquid aluminum. Master’s Thesis, South China University of Technology, China, 2015(in Chinese).
曾勇. Ti3AlC2/TiAl3制备及其耐铝液熔蚀-磨损性能. 硕士学位论文,华南理工大学, 2015.
33 Wang R, Min Y A,Wu X C. Heat Treatment of Metals, 2003,28 (12),5(in Chinese).
王荣, 闵永安, 吴晓春. 金属热处理, 2003,28 (12),5.
34 Vourlias G, Pistofidis N, Psyllaki P, et al. Journal of Alloys and Compounds, 2009,483,382.
35 Joshi V, Kulkarni K, Shivpuri R, et al. Surface and Coatings Technology, 2001, 146-147,338.
36 Wang Y. Surface and Coatings Technology,1997,94,60.
37 Liu H B, Zhang M Q, Yang L H, et al. Chinese Journal of Vacuum Science and Technology, 2015, 35(3),290(in Chinese).
刘海彬, 张民权, 杨灵华,等. 真空科学与技术学报, 2015, 35(3),290.
38 Tanaka S, Takagi M, Mano T. Journal of Physics: Conference Series, DOI: 10.1088/1742-6596/417/1/012032.
39 Luo Z M, Ni D H, Yi Y Y, et al. Corrosion & Protection, 2016, 37(5),388(in Chinese).
罗哲民, 倪东惠, 易耀勇, 等. 腐蚀与防护, 2016, 37(5),388.
40 Ramos-Masana A, Colominas C. Surface & Coating Technology, 2019, 375,171.
41 Zhu Z. Low temperature plasma nitriding (LTPN) technology and its effect on the properties of duplex treatment of H13 die steel. Master’s Thesis, South China University of Technology, China, 2016(in Chinese).
朱振中.低温离子氮化及其对双重处理H13模具钢性能的影响.硕士学位论文,华南理工大学, 2016.
[1] 刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122.
[2] 石全举, 顾振杰, 周圣丰. 激光原位合成NiTi基复合涂层的微结构特征与耐蚀性能[J]. 材料导报, 2020, 34(2): 2110-2116.
[3] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[4] 彭成, 梁爽, 黄福祥, 钟明君, 冉小杰. 键合丝键合界面研究进展[J]. 材料导报, 2019, 33(Z2): 501-504.
[5] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[6] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[7] 武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
[8] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[9] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[10] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[11] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[12] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[13] 黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
[14] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[15] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed