Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7082-7090    https://doi.org/10.11896/cldb.19040275
  无机非金属及其复合材料 |
耐高温、高强度隔热复合材料研究进展
瑚佩1,2, 姜勇刚1, 张忠明2, 冯军宗1, 李良军1, 冯坚1
1 国防科技大学新型陶瓷纤维及其复合材料重点实验室,长沙 410073;
2 西安理工大学材料科学与工程学院,西安 710048
Research Progress on High-temperature Insulation Composites with High Mechanical Property
HU Pei1,2, JIANG Yonggang1, ZHANG Zhongming2, FENG Junzong1, LI Liangjun1, FENG Jian1
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073,China;
2 College of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048,China
下载:  全 文 ( PDF ) ( 3402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型航天飞行器大面积热防护系统中,外部的防隔热层和机体内部冷结构之间一般需要用耐高温、高强度的隔热材料进行连接。在高温工业领域,隔热材料需要同时发挥隔热、承重功能。具有耐高温、高强度、低热导率性能的隔热材料在航空航天、高温工业等领域具有广阔的应用前景。
   多孔陶瓷因为其独特的多孔结构,具有较高的孔隙率、较低的热导率,被广泛应用于隔热领域。但多孔陶瓷材料的高孔隙率导致其强度较低,因此,近年来除开发新型高强度多孔陶瓷材料外,主要从选择合适的增强纤维和制备工艺优化方面不断提高多孔陶瓷材料的强度。目前,以纤维为增强体的纤维增强多孔陶瓷基复合材料,或者以纤维为基体的纤维多孔陶瓷材料研究成果较为丰硕,在充分发挥多孔陶瓷低热导率优势的同时大幅度提高了材料的强度。
   在具有较低热导率的多孔陶瓷基复合材料中,纤维增强纳米孔气凝胶隔热复合材料具有独特的纳米孔结构,其孔隙率很高、热导率很低且具有一定的强度;纤维多孔陶瓷具有由纤维与粘结剂构成的微米孔,孔隙率较高,其热导率虽高于气凝胶隔热复合材料,但强度较高、耐温性较好;纤维增强氧化物陶瓷基复合材料强度很高、耐温性也较好,但孔隙率较低、热导率较高。
   本文归纳了国内外耐高温、高强度隔热复合材料的研究进展,分别对纤维增强气凝胶隔热复合材料、纤维多孔陶瓷隔热材料、纤维增强氧化物陶瓷基复合材料的制备方法与相关性能进行介绍,分析了耐高温、高强度隔热复合材料面临的问题并展望其前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
瑚佩
姜勇刚
张忠明
冯军宗
李良军
冯坚
关键词:  耐高温  高强度  隔热复合材料    
Abstract: The connection between the external thermal insulation layer and the internal cold structure of the body generally needs to be made with thermal insulation materials in the thermal protection system of the high-speed aircraft. Insulation materials are desigened to bearing load while maintaining their advantageous of excellent thermal insulation properties in the field of high temperature industry. Heat insulation materials with high-temperature performance, high strength and low thermal conductivity have board application prospects.
Porous ceramics are widely used in the field of insulation due to their unique porous structure, high posity and low thermal conductivity. Howe-ver, the low strength of porous ceramic materials restrict the application because of the high posity. At present, lots of researches endeavors to seek fiber reinforced ceramic and optimize porous ceramic fabrication process, aiming at increasing strength of porous ceramic while reducing the thermal conductivity. Several research groups have reported the fiber reinfrced ceramic matrix conposites and fibrous porous ceramic are presented an excellent mechanical property and low thermal conductivity.
Among porous ceramic matrix composites with low thermal conductivity, fiber-reinforced nanopore aerogel thermal insulation composites have unique nanopore structure, high porosity, low thermal conductivity and strength. Fiber porous ceramics with high porosity, high strength and high temperature performance, but its thermal conductivity is higher than that of aerogel composites. Fiber reinforced oxide ceramic matrix composites have low porosity, excellent strength and high temperature resistance, but its thermal conductivity is too high.
This review offers a retrospection of the research efforts with respect to the high-temperature performance and high strength insulation compo-sites, and provides elaborate descriptions about the structure of the fiber reinforced aerogel insulation composites, the fibrous porous ceramic and fiber reinforced oxide ceramic matrix composites. We then pay attention to the problems confronting the current high-temperature performance and high strength insulation composites.
Key words:  high-temperature performance    high mechanical property    insulation composites
                    发布日期:  2020-04-10
ZTFLH:  TB34  
基金资助: 湖南省自然科学基金(2018JJ2469)
通讯作者:  jygemail@nudt.edu.cn;zmzhang@xaut.edu.cn   
作者简介:  瑚佩,2017年6月毕业于西安理工大学,获得工学学士学位。现为西安理工大学研究生以及国防科技大学新型陶瓷纤维及其复合材料重点实验室联合培养硕士研究生,在张忠明教授与姜勇刚副研究员的指导下进行研究。目前主要研究领域为耐高温的高强度隔热复合材料。
姜勇刚,国防科技大学空天科学学院副研究员、硕士研究生导师。2001年7月毕业于青岛大学化工系,2003年12月和2007年12月在国防科技大学材料科学与工程专业分别取得硕士和博士学位,2016.08—2017.07在英国牛津大学材料系访学一年,主要从事纳米气凝胶隔热复合材料研究。近年来,发表学术论文30余篇,获国家授权发明专利20余项。
张忠明,西安理工大学材料科学与工程学院教授、硕士研究生导师。1989年7月毕业于吉林大学金属材料工程系,1992年3月在中国科学院长春光学精密机械研究所取得硕士学位,1999年12月在西北工业大学材料学院取得博士学位,2000.08-2001.09在日本福井大学访学一年。主要从事从事金属材料的凝固成形技术及应用研究、快速凝固粉末/薄带制备技术及高性能材料成形技术研究.近年来,发表学术论文60余篇,获国家发明专利20余项,陕西省科学技术奖2项,陕西高等学科科学技术奖2项。
引用本文:    
瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
HU Pei, JIANG Yonggang, ZHANG Zhongming, FENG Junzong, LI Liangjun, FENG Jian. Research Progress on High-temperature Insulation Composites with High Mechanical Property. Materials Reports, 2020, 34(7): 7082-7090.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040275  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7082
1 Yang J, Chang F K, Derriso M M. In: Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites Ⅱ. 2003, pp. 59.
2 Dittert C, Kütemeyer M, Kuhn M, et al. In: 2018 Joint Thermophysics and Heat Transfer Conference. 2018, pp. 2947.
3 Glass D. In:15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008, pp. 2682.
4 Leleu F, Watillon P, Moulin J, et al. Acta Astronautica, 2005, 56(4), 453.
5 Pichon T, Barreteau R, Soyris P, et al. Acta Astronautica, 2009, 65(1-2),16.
6 Wang C A, Lang Y, Hu L F, et al. Journal of Ceramics, 2017, 38(3),287(in Chinese).
汪长安, 郎莹, 胡良发, 等. 陶瓷学报, 2017, 38(3), 287.
7 杨杰, 周长灵, 隋学叶, 等. 中国专利,CN106587901A, 2017.
8 裘友玖, 蒋梦成, 陈帅. 中国专利,CN108751952A, 2018.
9 Zhang S Y, Zhou W Y, Tang S Q, et al. Efractories, 2003, 37(2),119(in Chinese).
张世英,周武艺,唐绍裘, 等. 耐火材料, 2003, 37(2), 119.
10 Zhu M, Ji R, Li Z, et al. Construction and Building Materials, 2016, 112,398.
11 Colombo P, Modesti M. Journal of the American Ceramic Society, 1999, 82(3),573.
12 Neugebauer A, Chen K, Tang A, et al. Energy and Buildings, 2014, 79,47.
13 Kelly E Parmenter, Frederick Milstein. Journal of Non-Crystalline Solids, 1998, 223(3),179.
14 Ŝlosarczyk A. Nanomaterials, 2017, 7(2),44.
15 Maleki H, Durães L, Portugal A. Journal of Non-Crystalline Solids, 2014, 385, 55.
16 Trifu R, Rhine W, Melnikova I, et al. Ceramic Engineering and Science Proceedings, 2009, 30(6),301.
17 Chen Y, Ou Z, Liu Z, New Chemical Materials, 2017(8),51(in Chinese).
陈宇卓, 欧忠文, 刘朝辉, 等. 化工新型材料, 2017(8),51.
18 Luo K, Jiang Y, Feng J, et al. Journal of Synthetic Crystals, 2016, 45(10), 2389(in Chinese).
罗抗磊, 姜勇刚, 冯军宗, 等. 人工晶体学报, 2016, 45(10),2389.
19 Zhang Y, M Li J B, Jiang Z Z, et al. Fiber Glass, Chemical Industry Press, 2001(in Chinese).
张耀明, 李巨白, 姜肇中,等. 玻璃纤维与矿物棉全书, 化学工业出版社, 2001.
20 Wu H, Liao Y, Ding Y, et al. Heat Transfer Engineering, 2014, 35(11-12),1061.
21 Xi T, Mu Y, Hong-Yi G, et al. Journal of Functional Materials, 2014, 45(16),16139.
22 Huang Y, He S, Chen G, et al. Journal of Sol-Gel Science and Technology, 2018, 88(1),129.
23 Zhou T, Cheng X, Pan Y, et al. Applied Surface Science, 2018, 437, 321.
24 Kim C Y, Lee J K, Kim B I. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313,179.
25 Shafi S, Tian J, Navik R, et al. The Journal of Supercritical Fluids, 2019, 148,9.
26 Gao Q. Nano-porous silica, alumina aerogels and thermal super-insulation composites. Ph.D. Thesis, National University of Defense Technology, China, 2011(in Chinese).
高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料研究. 博士学位论文,国防科学技术大学, 2009.
27 Feng J, Gao Q F, Feng J Z, et al. Journal of National University of Defense Technology, 2010,32(1),40.
28 Chen H, Sui X, Zhou C, et al. Key Engineering Materials. 2016, 697,360.
29 张长瑞, 冯坚, 姜勇刚, 等. 中国专利, CN101792299A, 2010.
30 Xu L, Jiang Y, Feng J, et al. Ceramics International, 2015, 41(1),437.
31 Hu L M, Gao F, Chen W. Journal of Synthetic Ceramics, 2009, 38(1), 270(in Chinese).
胡利明, 高芳, 陈文. 人工晶体学报, 2009, 38(1),270.
32 Hou X, Zhang R, Fang D. Scripta Materialia, 2018, 143, 113.
33 Zhu J, LiuF, ZhouC, et al. Advanced Ceramics, 2015(3),30(in Chinese).
朱俊阳, 刘福田, 周长灵, 等. 现代技术陶瓷, 2015(3),30.
34 Guo X, Yan L, Hui Y, et al. Rare Metal Materials & Engineering, 2012, 41,436.
35 Sun Y, Zhao Z, Li X, et al. Ceramics International, 2018, 44(5), 5233.
36 Zhang R, Qu Q, Han B, et al. Materials Letters, 2016, 175, 219.
37 Zou W, Wang X, Wu Y, et al. Ceramics International, 2019, 45(1),644.
38 He J, Li X, Su D, et al. Journal of the European Ceramic Society, 2016, 36(6), 1487.
39 Ma X H. Investigation on structure stability of porous mullite fiber networks fabricated by freeze casting. Master’s Thesis, Tianjin University, China, 2016(in Chinese).
马晓晖. 冷冻浇铸法制备莫来石纤维多孔陶瓷及其高温结构稳定性. 硕士学位论文, 天津大学, 2016.
40 Dong X. Preparation and properties of porous ceramics with the framework of polycrystalline mullite fibers. Master’s Thesis, Tianjin University, China, 2012(in Chinese).
董学. 多晶莫来石纤维基多孔陶瓷的制备及性能研究. 硕士学位论文, 天津大学, 2012.
41 Hou Z, Du H, Liu J, et al. Journal of the European Ceramic Society, 2013, 33(4), 717.
42 Qian H. Preparation of porous mullite thermal insulation materials by gelcasting process. Master’s Thesis, University of Science and Technology of China, China, 2014(in Chinese).
钱浩然. 凝胶注模法制备多孔莫来石保温材料. 硕士学位论文, 中国科学技术大学, 2014.
43 Zhang R, Ye C, Hou X, et al. Ceramics International, 2016, 42(13), 14843.
44 Yang M, Luo X, Yi J, et al. Ceramics International, 2018, 44(11), 12664.
45 Dong X, Sui G, Yun Z, et al. Materials & Design, 2016, 90, 942.
46 Dong X, Lv H, Sui G, et al. Materials Science and Engineering: A, 2015, 635, 43.
47 Dong X, Sui G, Liu J, et al. Composites Science and Technology, 2014, 100, 92.
48 Okada K, Uchiyama S, Isobe T, et al. Journal of the European Ceramic Society, 2009, 29(12),2491.
49 Kim D K, Kriven W M. Journal of the American Ceramic Society, 2004, 87(5), 794.
50 Swain S K, Sarkar D. Journal of Asian Ceramic Societies, 2014, 2(3),241.
51 Ma X, Hu X, Du H, et al. Journal of the European Ceramic Cociety, 2016, 36(3),797.
52 Song Y. Preparation and properties for broadband wave-transparent two dimensional silica fiber reinforced ceramic matrix composited. Master’s Thesis, University of Science and Technology of China, China, 2010(in Chinese).
宋阳曦. 二维石英纤维织物增强宽频透波陶瓷基复合材料的制备及性能研究. 硕士学位论文, 国防科学技术大学, 2010.
53 Chen Q, Wang S, Li Z. Microporous & Mesoporous Materials, 2012, 152(2), 104.
54 Yang X, Li B, Li D, et al. Journal of the European Ceramic Society, 2019, 39(2-3), 240.
55 Gao Y, Zhang L, Chen J, et al. International Journal of Applied Ceramic Technology, 2017, 14(6): 1041.
56 Ruggles-Wrenn M B, Hetrick G,Baek S S. International Journal of Fatigue, 2007, 30(3), 117.
57 Wang S, Zhang C, Cao F, et al. Rare Metal Materials and Engineering, 2007, 36(s1), 615(in Chinese).
王思青, 张长瑞, 曹峰,等. 稀有金属材料与工程, 2007, 36(s1), 615.
58 Liang Y. Preparation and properties of fiber-reinforced porous YSZ cera-mics. Ph.D. Thesis, Tsinghua University, China, 2014(in Chinese).
郎莹. 纤维增强多孔YSZ陶瓷材料的制备和性能研究. 博士学位论文, 清华大学, 2014.
59 Lang Y, Dong Y, Zhou J, et al. Materials Science and Engineering: A, 2014, 600,76.
60 Kurushima T, Ishizaki K. Journal of the Ceramic Society of Japan, 1993, 101(1180),1415.
61 Ai J P, Zhou G H, Wang Z J, et al. Journal of the Chinese Ceramic Society, 2014, 42(6), 714(in Chinese).
艾建平,周国红,王正娟, 等. 硅酸盐学报, 2014, 42(6), 714.
62 Ai J P, Zhou G H, Wang Z J, et al. Materials China, 2015, 34(12), 916(in Chinese).
艾建平, 周国红, 王正娟, 等. 中国材料进展, 2015, 34(12), 916.
[1] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[2] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[3] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[4] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[5] 佟莹, 高林, 张开开, 权国政, 王玄, 周杰. 超高强度钢板的梯度控温相变强化模式[J]. 材料导报, 2019, 33(20): 3494-3501.
[6] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[7] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的非等温结晶动力学研究[J]. 《材料导报》期刊社, 2017, 31(6): 161-170.
[8] 王忠强, 胡国胜, 张静婷, 徐久升, 邵正杰. 熔融聚合耐高温聚酰胺的等温结晶动力学研究*[J]. 《材料导报》期刊社, 2017, 31(4): 137-144.
[9] 高古辉, 陈倩如, 郭浩冉, 程骋, 白秉哲. 贝/马复相钢超高周疲劳行为及非夹杂起裂*[J]. 《材料导报》期刊社, 2017, 31(20): 48-52.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed