Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8154-8158    https://doi.org/10.11896/cldb.19040207
  金属及金属基复合材料 |
冷轧板条马氏体组织与力学性能研究
周宇1, 钱丽华1, 刘天宇1, 张泉1,2, 吕知清1
1 燕山大学先进锻压成型技术与科学教育部重点实验室,秦皇岛 066004;
2 北京交通大学海滨学院, 沧州 061199
Microstructure and Mechanical Properties of Lath Martensite After Cold Rolling
ZHOU Yu1, QIAN Lihua1, LIU Tianyu1, ZHANG Quan1,2, LYU Zhiqing1
1 Key Laboratory of Advanced Forging and Stamping Technology and Science of Ministry of National Education, Yanshan University, Qinhuangdao 066004, China;
2 Haibin College, Beijing Jiaotong University, Cangzhou 061199, China
下载:  全 文 ( PDF ) ( 3906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将低碳钢(10#)淬火获得低碳板条马氏体组织,然后进行多道次冷轧变形,制备具有超高强度的低碳钢板材,研究其力学性能的变化规律,并利用金相显微分析和扫描电子显微分析方法观察其显微组织演变与断口形貌。实验结果表明,淬火获得的具有马氏体组织的低碳钢(10#)抗拉强度超过1.3 GPa,仍能保持较好的塑性(延伸率约为15%),随着冷轧变形量的增加,材料的强度和硬度显著增大,而塑性逐渐降低,当冷轧变形量大于30%后,断后延伸率低于10%。当冷轧变形量达到80%时,硬度从440HV(未变形)增加到532HV,抗拉强度超过2.0 GPa;随着变形量的增加,冷变形马氏体板条间距减小,变形组织与轧制方向趋于平行排列,逐渐呈现分层特征。随着冷轧变形量的增加,断口中心韧窝和空洞数量减少,而且韧窝的尺寸和深度减小,空洞相互连接,裂纹萌生,断口处出现了明显的分层裂纹和撕裂状的结构,当变形量超过50%时,断口处的分层结构和撕裂状的裂纹开始显现。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宇
钱丽华
刘天宇
张泉
吕知清
关键词:  低碳马氏体  超高强度  冷轧  显微组织  断裂行为    
Abstract: In this study, AISI 1010 was rapidly cooling to get the lath martensite completely. After cold rolling, it was developed ultra-high strength steel. The mechanical properties of the experimental steels after cold rolling deformation were investigated. Using optical microscopy and scanning electron microscopy, microstructural evolution and tensile fracture morphology were observed. The experimental results show that the AISI 1010 steel with lath martensite structure can still maintain good plasticity(the elongation about 15%) when its tensile strength exceeds 1.3 GPa. With the increase of cold rolling deformation, the strength and hardness of the material increase significantly, while the plasticity gradually decreases. When the cold rolling deformation is greater than 30%, the elongation after fracture is less than 10%. When the cold rolling reduction reach 80%, the hardness of lath martensite steel is increased to 532HV (80%) from 440HV (undeformed). The tensile strength of the experimental steel exceeds 2.0 GPa (80%). With the increase of cold rolling deformation, the spacing of cold-deformed martensite decreases. The deformation microstructures tend to parallel with the rolling direction and gradually change to the layered structure. With the increase of cold rolling deformation, the dimples and voids reduce at the center of the fracture. The size and depth of the dimples are decreased. The voids are connected to each other and the crack initiation occurs. The obvious layered cracks and tearing structure appear in the fracture. When the deformation reaches 80%, the layered structure and tear-like crack are very obvious.
Key words:  low-carbon martensite    ultra-high strength    cold rolling    microstructure    fracture behavior
                    发布日期:  2020-04-25
ZTFLH:  TG113  
基金资助: 河北省杰出青年基金项目(E2017203036)
通讯作者:  zqlv@ysu.edu.cn   
作者简介:  周宇,2017年6月毕业于燕山大学,获得工学学士学位。现为燕山大学机械工程学院研究生,在吕知清教授的指导下进行研究。目前主要从事超高强度金属制备与加工研究。2018年以第一作者身份在J. Magn. Magn. Mater期刊上发表过1篇论文。授权发明利1项。
吕知清,燕山大学教授。2008年博士毕业于燕山大学。2014年7月至11月在美国肯塔基大学进行访学研究,2015年3月至2016年3月在丹麦技术大学进行访学研究。一直从事先进钢铁材料制备及组织结构表征方面的研究,作为主要参加人参与完成了多项国家自然科学基金与国家科技支撑计划等项目,主持完成国家自然科学基金项目1项,河北省自然科学基金项目2项。2017年获得河北省杰出青年科学基金项目支持。发表论文60余篇,其中SCI收录论文40余篇(SCI引用460余次),已授权专利20项。获得河北省自然科学三等奖一项,指导研究生获得燕山大学优秀硕士学位论文2篇,河北省优秀硕士学位论文1篇。
引用本文:    
周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
ZHOU Yu, QIAN Lihua, LIU Tianyu, ZHANG Quan, LYU Zhiqing. Microstructure and Mechanical Properties of Lath Martensite After Cold Rolling. Materials Reports, 2020, 34(8): 8154-8158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040207  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8154
1 Ma M T. Advanced automotive steel,Chemical Industry Press, China, 2008(in Chinese).
马鸣图.先进汽车用钢,化学工业出版社, 2008.
2 Kang Y L, Chen G J, Zhu G M, et al. Iron and Steel, 2010, 45(8),1(in Chinese).
康永林, 陈贵江, 朱国明,等. 钢铁, 2010, 45(8),1.
3 Kang Y L. Iron and Steel, 2008, 43(6),1(in Chinese).
康永林. 钢铁, 2008, 43(6),1.
4 Li Z, Cheng X J, Cai A Y, et al. Transactions of Materials and Heat Treatment, 2014, 35(7),151(in Chinese).
李振, 程晓杰, 蔡阿云,等. 材料热处理学报, 2014, 35(7),151.
5 Yang H G, Zhao Z Z, Yang Y H, et al. Transactions of Materials and Heat Treatment, 2017, 38(7),120(in Chinese).
杨海根, 赵征志, 杨源华,等. 材料热处理学报, 2017, 38(7),120.
6 Xie L L, Tang D, Jiang H T, et al. Journal of Plasticity Engineering, 2013, 20(1),84(in Chinese).
谢磊磊, 唐荻, 江海涛,等. 塑性工程学报, 2013, 20(1),84
7 Hui W J, Zhang Y J, Chen Y, et al. Journal of Iron and Steel Research, 2012, 24(6),31(in Chinese).
惠卫军, 张永健, 陈鹰,等. 钢铁研究学报, 2012, 24(6),31.
8 Chen Y, Zhang Y J, Dong H, et al. Philippine Studies, 2015, 27(6),1(in Chinese).
陈鹰, 张英建, 董瀚,等. 钢铁研究学报, 2015, 27(6),1.
9 Valiev R Z. Progress in Materials Science, 2000, 45(2),103.
10 Tsuji N, Ueji R, Minamino Y. Scripta Materialia, 2002, 47(2),69.
11 Tsuji N, Saito Y, Utsunomiya H, et al. Scripta Materialia, 1999, 40(7),795.
12 Ueji R, Tsuji N, Minamino Y, et al. Acta Materialia, 2002, 50(16),4177.
13 Wei X, Liu W, Xu F, et al. Hot Working Technology, 2010, 39(20),12(in Chinese).
魏兴, 刘为, 许锋,等. 热加工工艺, 2010, 39(20),12.
14 Cao L, Li X T, Wang M T, et al. Journal of Yanshan University, 2013, 37(1),39(in Chinese).
曹蕾, 李学通, 王敏婷,等. 燕山大学学报, 2013, 37(1),39.
15 Zhao X, Jing T F, Gao Y W, et al. Materials Science and Engineering A, 2005, 397(1),117.
16 Zhu X D, Xue P, Li W. Baosteel Technology, 2017(5),1(in Chinese).
朱晓东, 薛鹏, 李伟. 宝钢技术, 2017(5),1.
17 Huang X, Kamikawa N, Tsuji N, et al. Isij International, 2008, 48(8),1080.
18 Masse J P, Chéhab B, Zurob H, et al. Transactions of the Iron & Steel Institute of Japan, 2014, 54(1),235.
19 Zhao Z H. Study on mechanical properties of low carbon steel after grain refinement. Master’s Thesis,Northeastern University, 2004.(in Chinese).
赵志华. 低碳钢晶粒细化后的力学性能研究. 硕士学位论文,东北大学, 2004.
20 Wang X Q, Cui F K, Yan G P, et al. China Mechanical Engineering,2013, 24(16),2248(in Chinese).
王晓强, 崔凤奎, 燕根鹏, 等. 中国机械工程, 2013, 24(16),2248.
21 Williamson G K, Smallman R E. Philosophical Magazine, 1956, 1(1),34.
22 Yu T, Hansen N, Huang X. Proceedings Mathematical Physical & Engineering Sciences, 2011, 467(2135),3039.
23 Yu T, Hughes D A, Hansen N, et al. Acta Materialia, 2015, 86,269.
24 Zhang L, Meng L. Chinese Journal of Nonferrous Metals, 2005, 15(5),751(in Chinese).
张雷, 孟亮. 中国有色金属学报, 2005, 15(5),751.
25 Song L N, Liu J B, Huang L Y, et al. Acta Metallurgica Sinica, 2012, 48(12),1459(in Chinese).
宋鲁男, 刘嘉斌, 黄六一,等. 金属学报, 2012,48(12),1459.
26 Kobayashi S, Demura M, Kishida K, et al. Intermetallics, 2005, 13(6),608.
[1] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[2] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[3] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[4] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[5] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[6] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[7] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[8] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[9] 陶博浩, 李菊, 张彦华. TA19双态组织钛合金线性摩擦焊接头的组织结构及演化行为[J]. 材料导报, 2020, 34(14): 14147-14153.
[10] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[11] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[12] 费文潘, 薛松柏, 陈宇豪, 吴杰, 王博, 林中强. Sr、La复合添加对SAl 4047焊丝氢含量及焊接接头力学性能的影响[J]. 材料导报, 2020, 34(10): 10150-10156.
[13] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[14] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[15] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed