Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6138-6143    https://doi.org/10.11896/cldb.19030150
  金属与金属基复合材料 |
压力对挤压铸造E级钢低温冲击韧性的影响
王婷玥, 邢书明, 敖晓辉, 王营
北京交通大学机械与电子控制工程学院,北京 100044
Effect of Pressure on Low-temperature Impact Toughness of Grade E Cast Steel Prepared by Squeeze-casting
WANG Tingyue, XING Shuming, AO Xiaohui, WANG Ying
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
下载:  全 文 ( PDF ) ( 8627KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用挤压铸造工艺制备了不同压力下的E级钢调质态试样,并进行了低温夏比冲击试验和布氏硬度检测,研究了挤压压力对E级钢低温冲击韧性的影响规律,并用光学显微镜(OM)和扫描电镜(SEM)对显微组织和冲击断口进行了观察。研究结果表明,当挤压压力在0~150MPa范围内,E级钢的40℃低温冲击韧性先增大后减小。在挤压压力为38MPa时,E级钢低温冲击韧性最佳,比金属型重力铸造E级钢提高65.4%,硬度仅降低了6.17%。进一步提高压力,冲击吸收功呈线性下降,硬度小幅上升。显微组织分析表明,随着挤压压力的提高,E级钢晶粒明显细化,铁素体含量增多,有利于E级钢冲击韧性的提高。另一方面,由于过冷度的提高,E级钢在压力为60MPa时析出了魏氏组织,导致低温冲击韧性显著下降。断口分析表明,金属型重力铸造E级钢低温冲击断口为准解理形貌,而采用38MPa挤压铸造的E级钢即使在40℃低温下,断口仍存在大量细密的韧窝,属于韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王婷玥
邢书明
敖晓辉
王营
关键词:  挤压铸造  压力  E级钢  低温冲击韧性  显微组织    
Abstract: The grade E cast steel specimens under different pressures prepared by squeeze-casting were quenched and tempered. The Charpy impact test at low-temperature were carried out and the Brinell hardness were tested. The effect of pressures on the low-temperature impact toughness of grade E cast steel were investigated. The microstructure and impact fracture were observed by optical microscopy (OM) and scanning electron microscopy (SEM). The experimental results show that the low-temperature impact toughness at 40 ℃ of grade E cast steel increases first and then decreases when the pressures are in the range from 0 MPa to 150 MPa. The low-temperature impact energy exhibits their optimal values when the pressure is 38 MPa, which is 65.4% higher than that of metal gravity casting, and the hardness is only reduced by 6.17%. With the further increase of pressure, the Charpy impact energy decreases linearly and the hardness increases slightly. Microstructure analysis shows that with the increase of pressure, the grains of grade E cast steel are refined significantly and the content of ferrite increase. That is beneficial to the impact toughness of grade E cast steel. In addition, because of the increase of degree of super-cooling, the Widmanstatten is precipitated at the pressure of 60 MPa. This leads to the decrease of low-temperature impact toughness. Impact fracture analysis shows that the fracture of grade E cast steel produced by gravity casting in metal mould is quasi-cleavage morphology. The specimens prepared by squeeze-casting at the pressure of 38 MPa still has a large number of fine dimples even at 40 ℃, which belongs to ductile fracture.
Key words:  squeeze-casting    pressure    grade E cast steel    low-temperature impact toughness    microstructure
                    发布日期:  2020-03-12
ZTFLH:  TG249.2+7  
基金资助: 安徽省科技攻关计划项目(1604e1002007)
作者简介:  王婷玥,北京交通大学材料科学与工程系硕士研究生。主要研究方向为黑色金属材料压力加工。申报发明专利2项;邢书明,北京交通大学机电学院,教授,博导,半固态成形研究中心主任。1999年7月毕业于北京科技大学材料加工专业,获博士学位。1999年9月至2001年6月在清华大学做博士后研究工作。主要从事机械材料加工工程、金属材料先进成形技术与理论、现代凝固控制技术与理论、半固态新材料研究。拥有发明专利20余项,发表论文近百篇,出版著作3本。
引用本文:    
王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
WANG Tingyue, XING Shuming, AO Xiaohui, WANG Ying. Effect of Pressure on Low-temperature Impact Toughness of Grade E Cast Steel Prepared by Squeeze-casting. Materials Reports, 2020, 34(6): 6138-6143.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030150  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6138
1 Huang J, Xia L, Zhang Y, et al. Case Studies in Engineering Failure Analysis, 2014, 2 (1),15.
2 Infante V, Branco C M, Brito A S, et al. Engineering Failure Analysis, 2003, 10 (4),475.
3 Chunduru S P, Kim M J, Mirman C. Engineering Failure Analysis, 2011, 18 (1),374.
4 Song Z, Xie J, Li Z, et al. In:International Conference on Measuring Technology & Mechatronics Automation. Zhangjiajie, 2009,pp.146.
5 Wang G X, Bu X S, Li L J, et al. Applied Mechanics and Materials, 2013, 367,122.
6 Ghomashchi M R, Vikhrov A.Journal of Materials Processing Tech, 2000, 101 (1),1.
7 Wei L J, Ma F L, Li R J. Journal of Materials Engineering,2003 (7),40 (in Chinese).
韦丽君, 马风雷, 李任江.材料工程, 2003 (7),40.
8 Bin S B, Xing S M, Tian L M, et al.Transactions of Nonferrous Metals Society of China, 2013, 23 (4),977.
9 Jie J C, Zou C M, Wang H W, et al. Scripta Materialia, 2011, 64 (6),588.
10 Xing S M, Bao P W, Nan L I, et al.Transactions of Nonferrous Metals Society of China, 2010, 20 (s3),s993.
11 Yang L, Hou H, Zhao Y H, et al. Transactions of Nonferrous Metals Society of China, 2015, 25 (12),3936 (in Chinese).
12 Li F, Xue Z Z, Bo J X, et al. China Foundry, 2015, 12 (5),367.
13 Yu B S, Xing S M, Ao X H, et al.Chinese Journal of Engineering, 2017, 39 (7),1020 (in Chinese).
于佰水, 邢书明, 敖晓辉,等.工程科学学报, 2017, 39 (7),1020.
14 Ji S, Fan Z, Bevis M J.Materials Science & Engineering A, 2001, 299 (1),210.
15 Li R X, Li R D, Bai Y H, et al. Transactions of Nonferrous Metals Society of China, 2010, 20 (1),59.
16 Masuku E P.Transactions of Nonferrous Metals Society of China, 2010, 20 (S3),s837.
17 Krielaart G P, Zwaag V D. Materials Science & Engineering A, 1998, 246 (1-2),104.
18 Lee S, Kwon D, Lee Y K, et al. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science), 1995, 26 (5),1093.
19 Todorov R P, Khristov K G. Metal Science & Heat Treatment, 2004, 46 (1-2),49.
20 Zhi R T, Tu H, Xiao J M.Chinese Journal of Engineering, 1983 (1),146 (in Chinese).
职任涛, 屠欢, 肖纪美. 工程科学学报, 1983 (1),146.
21 Koval'Chuk G Z, Geichenko V N, Yarmosh V N, et al.Metal Science & Heat Treatment, 1979, 21 (2),114.
22 Martin M L, Fenske J A, Liu G S, et al. Acta Materialia, 2011, 59 (4),1601.
23 Gao Y M, Li J W, Zhang Z L. Journal of Xi'an Jiaotong University, 2000, 34 (3),74 (in Chinese).
高义民, 李继文, 张祖临. 西安交通大学学报, 2000, 34 (3),74.
24 Liu X, Yang J C, Gao X Z. Chinese Journal of Engineering, 2010, 32 (5),605 (in Chinese).
刘晓, 杨吉春, 高学中.工程科学学报, 2010, 32 (5),605.
25 Xu Y D, Hu S S, Nie J J, et al. Advanced Materials Research, 2012, 554-556,465.
[1] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[2] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[3] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[4] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[5] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[6] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[7] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[8] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[9] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[10] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[11] 王林峰,曾韬睿,翁其能. 基于统计损伤理论的饱和细粒砂岩本构模型研究[J]. 材料导报, 2019, 33(22): 3727-3731.
[12] 叶寒, 张坚强, 黄俊强, 刘勇. 选区激光熔化WC/AlSi10Mg复合材料的微观组织和疲劳性能[J]. 材料导报, 2019, 33(22): 3789-3794.
[13] 吴杰, 薛松柏, 费文潘, 韩翼龙, 张鹏. 铝/钢异种材料钎焊研究现状与发展趋势[J]. 材料导报, 2019, 33(21): 3533-3540.
[14] 孙阳辉, 艾诚, 张晓峰, 刘林. 镍基单晶高温合金固溶处理制度的研究进展[J]. 材料导报, 2019, 33(21): 3630-3636.
[15] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed