Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3630-3636    https://doi.org/10.11896/cldb.18090032
  金属与金属基复合材料 |
镍基单晶高温合金固溶处理制度的研究进展
孙阳辉1, 艾诚1, 张晓峰1, 刘林2
1 长安大学材料科学与工程学院,西安 710064
2 西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress on Solution Treatment Regimes of Ni Based SingleCrystal Superalloy
SUN Yanghui1, AI Cheng1, ZHANG Xiaofeng1, LIU Lin2
1 School Material Science and Engineering, Chang'an University Xi'an 710064
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
下载:  全 文 ( PDF ) ( 20465KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单晶涡轮叶片是航空发动机的关键热端部件,需要在高温和高腐蚀的环境下长时服役,这就需要单晶涡轮叶片具有优异的高温力学性能、较高的抗氧化和抗腐蚀性能,而镍基单晶高温合金作为航空发动机涡轮叶片的首选材料,近几十年来一直受到研究者的关注。为进一步提高先进镍基高温合金的承温能力,需不断提高先进镍基单晶高温合金中难熔元素(例如Re和W)的含量。同时,铸态镍基单晶高温合金中存在成分不均匀(严重的显微偏析)和组织不均匀(大量的枝晶间析出物)的缺陷,这种成分和组织的不均匀性如果不能被高温固溶处理消除,则将显著恶化单晶高温合金的力学性能与长时服役性能。因此,有必要探索适用于先进镍基单晶高温合金的固溶处理工艺。
    固溶处理工艺的发展可以分为两个阶段。第一阶段:第一代单晶高温合金,由于合金中不含Re元素,合金只需要在γ′回溶温度和初熔温度之间保温较短的时间即可实现合金组织和成分的均匀化。第二阶段:从第二代单晶高温合金开始,合金中难熔元素(尤其是Re元素)的含量不断增加,合金的成分均匀化难度显著增大,即固溶温度显著升高、固溶时间显著延长。因此,先进镍基单晶高温合金固溶处理工艺的研究重点从关注合金中各相的溶解温度和合金的初熔温度转变为合金中各元素的均匀化程度。
    大量的研究结果表明,低温段固溶的目的是通过固态相变的方式消除枝晶间析出物,而高温段固溶的目的是通过固相扩散的方式消除或降低合金元素的显微偏析。随着单晶高温合金的发展,先进单晶高温合金中难熔元素(例如Re和W)的含量显著提高,一方面,难熔合金元素在Ni中具有较低的互扩散系数;另一方面,难熔元素在铸态单晶高温合金中的显微偏析程度较高。因此对于先进镍基单晶高温合金,实现元素均匀化和制定合理的固溶处理工艺的难度显著提高。同时,单晶高温合金的相变温度也受到固溶处理工艺的影响。
    本文归纳总结了单晶高温合金固溶处理制度的研究进展,详细介绍了第二代和第三代镍基单晶高温合金的固溶处理制度,阐述了固溶处理对显微组织和成分分布的影响规律,对比了单晶高温合金传统的台阶式升温固溶处理工艺和新型的连续升温固溶处理工艺,并对重熔固溶处理工艺进行了介绍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙阳辉
艾诚
张晓峰
刘林
关键词:  单晶高温合金  固溶处理  显微组织  显微偏析    
Abstract: Single crystal turbine blades are the key hot end components of aeroengine, which need serve at high temperature for relatively long time. Therefore, single crystal turbine blades should have excellent high temperature mechanical properties, good oxidation resistance and corrosion resistance at high temperature environment. As the preferred material of single crystal turbine blades, Ni based single crystal superalloy has been widely concerned by many researchers in the past few decades. In order to further improve the high temperature mechanical properties of advanced Ni based single crystal superalloys, the content of high refractory elements (such as Re and W) in advanced Ni based single crystal superalloys continuously increased. Meanwhile, typical as-cast single crystal superalloys contain inhomogeneities of composition (severe microsegregation) and microstructure (massive interdendritic precipitations). It should be noteworthy that if the inhomogeneities of composition and microstructure cannot be eliminated by high temperature solution treatment, the mechanical properties and long-term service properties of single crystal superalloys will be significantly deteriorated. Therefore, appropriate solution treatment regimes should be designed for advanced Ni based single crystal superalloys.
    The development of solid solution treatment process can be divided into two stages. The first stage: with regard to 1st generation single crystal superalloys without Re element, the homogenization of microstructure and composition in this kind of alloy can be achieved by solution treated between the γ′-solvus temperature and the initial melting temperature of alloy for a relatively short time. The second stage started from the 2nd generation single crystal superalloy, the content of refractory elements (especially Re element) in single crystal superalloy continuously increased the difficulty of homogenization of composition significantly increased, i.e. both the temperature and time of solution treatment obviously increased. Therefore, the research hotspot of solution treatment regimes of advanced Ni based single crystal superalloy changed from phase transformation temperature and incipient melting temperature of the alloy to the homogenization degree of alloying elements in single crystal superalloy.
    As cast Ni based single crystal superalloys contained numerous interdendritic precipitations and severe microsegregation of alloying elements. Therefore, in order to obtain uniform microstructure and composition, high temperature solution treatment is necessary. Previous studies indicated that the aim of solution treatment at low-temperature stage is to eliminate interdendritic precipitation, and the aim of solution treatment at high-temperature stage is to eliminate/reduce microsegregation degree of alloying elements. With the development of single crystal superalloy, the content of refractory elements in advanced single crystal superalloy (e.g. Re and W) obviously increased. On the one hand, refractory elements had relatively low interdiffusion coefficients in Ni, on the other hand, refractory elements had severe microsegregation in as-cast alloy. Therefore, it is difficult to eliminate microsegregation of refractory elements and design suitable solution treatment regimes. Meanwhile, phase transformation tempe-ratures of single crystal superalloys were also affected by solution treatment regimes.
    In this paper, the research progress of solution treatment regimes of Ni based single crystal superalloy is summarized. Solution treatment regimes of 2nd and 3rd generation Ni based single crystal superalloys are detailed analyzed, and the effects of solution treatment on microstructure and microsegregation are also illustrated. Moreover, the conventional stepwise solution treatment method and newly developed continuous heating solution treatment method are compared. Meanwhile, the remelting solution treatment is also introduced in this paper.
Key words:  single crystal superalloy    solution treatment    microstructure    microsegregation
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TG156  
基金资助: 国家自然科学基金 (51701020;51631008);陕西省自然科学基金(2018JQ5139);中国博士后科学基金 (2016M602735);中央高校基本科研业务费专项资金 (310831171004)
作者简介:  孙阳辉,2013年毕业于陕西理工大学,获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在张晓峰副教授的指导下进行研究。目前的主要研究领域为先进单晶高温合金。
    艾诚,长安大学材料学院讲师。于2010年在西北工业大学取得工学学士学位,于2016年在北京航空航天大学取得工学博士学位,长期从事单晶高温合金领域的研究工作,以第一作者在Journal of Alloys and CompoundsJournal of Crystal Growth、Progress in Natural Science: Materials International等SCI学术期刊发表研究论文10余篇。目前主持国家自然科学基金、陕西省自然科学基金与中国博士后基金等项目。
引用本文:    
孙阳辉, 艾诚, 张晓峰, 刘林. 镍基单晶高温合金固溶处理制度的研究进展[J]. 材料导报, 2019, 33(21): 3630-3636.
SUN Yanghui, AI Cheng, ZHANG Xiaofeng, LIU Lin. Research Progress on Solution Treatment Regimes of Ni Based SingleCrystal Superalloy. Materials Reports, 2019, 33(21): 3630-3636.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090032  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3630
1 Hu Z Q, Liu L R, Jin T, et al. Aeroengine, 2005, 31(3), 1(in Chinese).
胡壮麒,刘丽荣,金涛,等.航空发动机, 2005, 31(3), 1.
2 Sun XF, Jin T, Zhou Y Z, et al. Rare Metals Letters, 2012, 31(12), 1(in Chinese).
孙晓峰,金涛,周亦胄,等.中国材料进展, 2012, 31(12), 1.
3 Luo Y S, Liu S Z, Sun F L. Materials Review, 2005, 19(8), 55(in Chinese).
骆宇时, 刘世忠, 孙凤礼. 材料导报, 2005, 19(8), 55.
4 Huang M, Zhu J. Rare Metals, 2016, 35(2), 1.
5 Liu G. Effect of rhenium and ruthenium on the solidification characteristics and microstructure of nickel-based single crystal superalloys. Ph.D.Thesis, Northwestern Polytechnical University, China, 2012 (in Chinese).
刘刚.铼和钌对单晶高温合金凝固特性及组织的影响. 博士学位论文, 西北工业大学, 2012.
6 Tan X P, Liu J L, Jin T, et al. Materials Science & Engineering A, 2011, 528(29), 8381.
7 Chen J Y, Feng Q, Cao L M, et al. Progress in Natural Science: Mate-rials International, 2010, 20(1), 61.
8 Huang M, Zhu J. Rare Materials, 2016, 35(2), 127.
9 Zhang J X, Murakumo T, Koizumi Y, et al. Metallurgical & Materials Transactions A, 2004, 35(6), 1911.
10 Erickson G L. In: Superalloys 1996: The Development and Application of CMSX-10. Warrendale, 1996, pp. 35.
11 Hardy M, Huron E, Glatzel U, et al. In: Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. Warrendale, 2016, pp. 57.
12 Li J R, Zhong Z G, Liu S Z, et al. In: Superalloys 2000:A Low-cost Second Generation Single Crystal Superalloys DD6. Warrendale, 2000, pp. 777.
13 Caron P, Khan T. Aerospace Science & Technology, 1999, 3(3), 513.
14 Walston S, Cetel A, Mackay R, et al. In: Superalloys 2004: Joint Deve-lopment of A Fourth Generation Single Crystal Superalloy. Warrendale, 2004, pp. 15.
15 Sato A, Harada H, Yeh A C, et al. In: Superalloys 2008: A 5th generation SC superalloy With Balanced High Temperature Properties and Processability. Warrendale, 2008, pp. 131.
16 Ai C. Study on solifidification behavior and microstructure control of se-cond generation Ni3Al based single crystal alloy under high temperature gradient. Ph.D. Thesis, Beihang University, China, 2015 (in Chinese).
艾诚.二代Ni3Al基单晶合金的高温度梯度凝固行为与组织控制研究. 博士学位论文, 北京航空航天大学, 2015.
17 Chen R Z. Journal of Materials Engineering, 1995(8), 3 (in Chinese).
陈荣章. 材料工程, 1995(8), 3.
18 Zhang S X. Solution treatment of nickel-based single crystal superalloys under high-thermal gradient directional solidification. Ph.D.Thesis, Northwestern Polytechnical University, China, 2012 (in Chinese).
张胜霞.高梯度定向凝固单晶高温合金固溶处理研究.博士学位论文, 西北工业大学, 2012.
19 Paraschiv A, Matache G, Puscasu C. Transportation Research Procedia, DOI:10.1016/j.trpro.2018.02.027.
20 Zhu O, Li Y L, Zhang Y, et al. Foundry Technology, 2013, 34(9), 1137(in Chinese).
朱鸥,李玉龙,张燕,等.铸造技术, 2013, 34(9), 1137.
21 Mackay R A, Ebert L J. Scripta Metallurgica, 1983, 17(10), 217.
22 Tian S, Wang M, Li T, et al. Materials Science & Engineering A, 2010, 527(21-22), 5444.
23 Shi Q, Ding X, Chen J, et al. Metallurgical & Materials Transactions A, 2014, 45(4), 1665.
24 Karunaratne M S A, Cox D C, Carter P, et al. In: Superalloys 2000: Modelling of the Microsegregation in CMSX-4 Superalloy and its Homogenization during Heat Treatment. Warrendale, 2000, pp. 263.
25 Wilson B C, Cutler E R, Fuchs G E. Materials Science & Engineering A, 2008, 479(1-2), 356.
26 Khan T. Advanced Materials & Processes, 1990, 1, 9.
27 Han M, Luo Y S. Journal of Aeronautical Materials, 2009,29(2), 34(in Chinese).
韩梅, 骆宇时. 航空材料学报, 2009, 29(2), 34.
28 Yan P, Shan X, Zhao J C, et al. Journal of Aeronautical Materials, 1999, 19(1), 6(in Chinese).
燕平, 单熙,赵京晨, 等. 航空材料学报, 1999, 19(1), 6.
29 Lee H S, Kim D H, Kim D S, et al. Journal of Alloys and Compounds, 2013, 561(6), 135.
30 Su X, Xu Q, Wang R, et al. Materials & Design, 2018, 141, 296.
31 Heckl A, Retting R, Singer R F. Metallurgical & Materials Transactions A, 2010, 41(1), 202.
32 Fuchs G E. Materials Science & Engineering A, 2001, 300(1), 52.
33 Hegde S R, Kearsey R M, Beddoes J C. Materials Science & Engineering A, 2010, 527(21-22), 5528.
34 Zhang Y, Liu L, Huang T, et al. Journal of Alloys & Compounds, 2017, 723, 922.
35 Zhang Y, Liu L, Huang T, et al. Scripta Materialia, 2017, 136, 74.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[6] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[7] 吴杰, 薛松柏, 费文潘, 韩翼龙, 张鹏. 铝/钢异种材料钎焊研究现状与发展趋势[J]. 材料导报, 2019, 33(21): 3533-3540.
[8] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[9] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[10] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[11] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[12] 唐丽, 尹立孟, 王金钊, 刘成, 王学军. X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学[J]. 材料导报, 2019, 33(18): 3119-3124.
[13] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[14] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[15] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed