Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3119-3124    https://doi.org/10.11896/cldb.18080071
  金属与金属基复合材料 |
X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学
唐丽1, 尹立孟1, 王金钊1, 刘成1, 王学军2
1 重庆科技学院冶金与材料工程学院,重庆 401331
2 四川石油天然气建设工程有限责任公司,成都 610041
Continuous Cooling Transformation Behaviors and Bainite Transformation Kinetics of X80 Pipeline Steel During the Second Thermal Cycle
TANG Li1, YIN Limeng1, WANG Jinzhao1, LIU Cheng1, WANG Xuejun2
1 School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331
2 Sichuan Oil and Gas Construction Engineering Co., Ltd, Chengdu 610041
下载:  全 文 ( PDF ) ( 3688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用高温相变仪DIL805A/D实现了X80管线钢的焊接热模拟实验,采用OM、SEM、TEM和显微硬度计来获得不同连续冷却速率下X80管线钢的显微组织和硬度,进而建立了二次热循环下热影响区的连续冷却转变曲线(SHCCT曲线),并研究贝氏体相变机制及相变动力学。此外,还构建了相变点-冷却速率之间的回归模型,获得了高拟合精度的BsMsTf与冷却速率v之间的定量关系。结果表明:在二次热循环不同冷却速率下,X80的组织依次为:先共析铁素体(0.5~1 ℃/s)、贝氏体(5~50 ℃/s)、板条马氏体(大于75 ℃/s);当冷却速率小于100 ℃/s时,显微硬度随冷却速率增大而增加,当冷却速率超过100 ℃/s后,硬度维持在332.5HV1左右;贝氏体相变局部激活能随其体积分数(fb)的增加而减小,平均激活能约为108.6 kJ/mol,且贝氏体转变的主导生长机制是一维生长和二维生长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐丽
尹立孟
王金钊
刘成
王学军
关键词:  X80管线钢  二次热循环  显微组织  SHCCT曲线  相变动力学    
Abstract: Based on the welding thermal simulation of X80 pipeline steel by using DIL805A/D quenching dilatometers, the microstructure and hardness of X80 pipeline steel with different continuous cooling rates were obtained by means of OM, SEM, TEM and micro-hardness testing, and continuous cooling transformation curves of X80 heat-affected zone (SHCCT curves) during the second thermal cycle was determined. The bainite transformation mechanism and bainite transformation kinetics were studied by means of kinetic analysis. In addition, the regression model of phase transformation point-cooling rate was established, also, quantitative equations between the phase transformation point (including the start temperature for bainite transformation Bs, the start temperature for martensite transformation Ms, the finish temperature for phase transformation Tf) and the cooling rate with high fit degree was obtained by regression calculation. The results show that the most dominant microstructure of X80 pipeline steel after the second thermal cycle at different cooling rates appears successively such as, proeutectoid ferrite (0.5—1 ℃/s), bainite (5—50 ℃/s), lath martensite (75 ℃/s and above cooling rates), especially. When the cooling rate is less than 100 ℃/s, the hardness increases with the increase of cooling rate. On the contrary, the hardness remains at about 332.5HV1 when the cooling rate exceeds 100 ℃/s. As the volume fraction of bainite transformation (fb) increases, the local activation energy decreases and the average energy is about 108.6 kJ/mol, and the dominating mechanism of bainite transformation is the two-dimensional and one-dimensional growth.
Key words:  X80 pipeline steel    second thermal cycle    microstructure    SHCCT curves    transformation kinetics
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG113  
  TG115  
基金资助: 国家自然科学基金(51674056)
通讯作者:  yeenlm@cqust.edu.cn   
作者简介:  唐丽,女,1993年生,硕士研究生,发表学术论文2篇,主持研究生科技创新项目1项。
尹立孟,教授、副院长,硕士研究生导师,主要研究方向为高性能油气管材焊接技术与模拟、电子封装材料与可靠性。2009年6月在华南理工大学获得材料加工工程专业工学博士学位,毕业后在重庆科技学院任教至今,其中,在2011—2012年到美国马里兰大学进行访学研究。以第一完成人获省部级科技进步奖4项,主持包括国家自然科学基金项目(面上项目)、省部级项目等10多项,在国内外学术期刊上发表论文50余篇,申请国家发明专利10余项,其中授权4项。同时,还担任多个学术期刊的审稿人。
引用本文:    
唐丽, 尹立孟, 王金钊, 刘成, 王学军. X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学[J]. 材料导报, 2019, 33(18): 3119-3124.
TANG Li, YIN Limeng, WANG Jinzhao, LIU Cheng, WANG Xuejun. Continuous Cooling Transformation Behaviors and Bainite Transformation Kinetics of X80 Pipeline Steel During the Second Thermal Cycle. Materials Reports, 2019, 33(18): 3119-3124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080071  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3119
[1] Sharma S K, Maheshwari S. Journal of Natural Gas Science and Engineering, 2017, 38, 203.
[2] Witek M. Journal of Natural Gas Science and Engineering, 2015, 27(1), 374.
[3] Deng W, Gao X H, Qin X M, et al. Acta Metallurgica Sinica, 2010, 46(8), 959(in Chinese).邓伟, 高秀华, 秦小梅,等. 金属学报, 2010, 46(8), 959.
[4] Miao C L, Shang C J, Wang X M, et al. Acta Metallurgica Sinica, 2010, 46(5), 541(in Chinese).缪成亮, 尚成嘉, 王学敏, 等.金属学报, 2010, 46(5), 541.
[5] Bi Z Y. Welding Technology for Line Pipe, Petroleum Industry Press, China,2013(in Chinese).毕宗岳. 管线钢管焊接技术, 石油工业出版社, 2013.
[6] Zhu Z, Han J, Li H. Metallurgical and Materials Transactions A, 2015, 46(11), 5467.
[7] Lan L, Kong X, Qiu C. Materials Characterization, 2015, 105(5), 95.
[8] Cizek P, Wynne B P, Davies C H J, et al. Metallurgical and Materials Transactions A, 2015, 46(1), 407.
[9] Gianetto J A, Fazeli F, Chen Y, et al. In: Proceedings of the 2014 10th International Pipeline Conference. Calgary, 2014,pp.V003T07A035.
[10] Li X, Ma N, Xu X, et al. Quarterly Journal of the Japan Welding Society, 2013, 31(4), 109s.
[11] Cai H J, Gao Z, Song R B, et al. Transactions of Materials and Heat Treatment, 2015, 36(3), 214(in Chinese).蔡恒君, 高喆, 宋仁伯,等.材料热处理学报, 2015, 36(3), 214.
[12] Li C, Wang Y, Chen Y. Journal of Materials Science, 2011, 46(19), 6424.
[13] Nie W J, Shang C J, You Y, et al. Acta Metallurgica Sinica, 2012, 48(7), 797(in Chinese).聂文金, 尚成嘉, 由洋, 等.金属学报, 2012, 48(7), 797.
[14] Chen C X, Li W S, Wang Q P, et al. Journal of Materials Engineering, 2005(5), 22(in Chinese).陈翠欣, 李午申, 王庆鹏, 等. 材料工程, 2005(5), 22.
[15] Zheng Y F, Wu R M, Li X C, et al. Materials Science and Technology, 2017, 33(4), 454.
[16] Sung H K, Shin S Y, Hwang B, et al. Metallurgical and Materials Transactions A, 2011, 42(7), 1827.
[17] Takayama N, Miyamoto G, Furuhara T. Acta Materialia, 2012, 60(5), 2387.
[18] Chen X W, Liao B, Qiao G Y, et al. Journal of Iron and Steel Research, International, 2013, 20(12), 53.
[19] Okaguchi S, Ohtani H, Ohmori Y. Materials Transactions, 1991, 32(8), 697.
[20] Cizek P, Wynne B P, Davies C H J, et al. Metallurgical and Materials Transactions A, 2002, 33(5), 1331.
[21] Quidort D, Bréchet Y. Scripta Materialia, 2002, 47(3), 151.
[22] Li X C, Zheng Y F, Wu X C. Materials Review B:Reseach Papers, 2017, 31(3), 86(in Chinese).李晓成, 郑亚风, 吴晓春. 材料导报:研究篇, 2017, 31(3), 86.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[6] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[7] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[8] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[9] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[10] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[11] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[12] 王云鹏, 胡嘉玮, 许小云, 刘道峰, 蒋洪章, 王晓勇, 颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[13] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[14] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[15] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[6] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed