Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 78-89    https://doi.org/10.11896/cldb.201901009
  材料与可持续发展(一)——面向洁净能源的先进材料 |
先进核能系统用ODS钢的显微组织设计与调控研究进展
徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健
北京科技大学材料科学与工程学院,北京 100083
Research Progress on Microstructure Design and Control of ODS Steels Applied to Advanced Nuclear Energy Systems
XU Shuai, CHEN Lingzhi, CAO Shuguang, JIA Haodong, ZHOU Zhangjian
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 4496KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核能是一种重要的清洁能源,目前正在大力发展具有更高安全性和经济性的第四代反应堆及聚变堆,与当前商用反应堆相比,其工作温度更高,辐照剂量更强,传统的锆合金及不锈钢已不能满足未来先进反应堆苛刻的服役环境,具有优异综合服役性能的关键结构材料的研发成为制约先进核能工程应用的瓶颈之一。通过机械合金化等先进粉末冶金方法可以向钢基体中引入数密度极高的超细纳米氧化物粒子,所制备的纳米氧化物弥散强化(Oxide dispersion strengthened, ODS)钢具有比同类熔炼钢更优异的高温蠕变强度以及抗辐照性能,从而具有更高的服役温度窗口,因而被确定为多种第四代反应堆包壳和未来聚变堆包层结构的重要候选材料,成为国际核材料领域研究的热点。
   ODS钢的优异性能源于其成分设计和采用先进粉末冶金工艺形成的独特的显微组织,即亚微米的超细晶粒组织以及在晶内弥散分布的平均尺寸仅为几纳米、数密度高达1023 m-3的氧化物粒子或团簇,这些弥散相具有极高的热稳定性及抗辐照稳定性,可以起到有效的位错钉扎强化作用,从而明显提高材料的高温强度及服役温度上限;而大量的弥散粒子与基体之间形成的界面可以对辐照引起的缺陷及气泡进行有效捕获,显著提高材料的抗辐照肿胀性能。满足服役性能要求的显微组织的设计和有效调控是制备高性能先进材料的核心,而显微组织又明显受控于成分设计、制备技术及工艺参数。虽然近年来关于ODS钢的研究日益活跃,但是由于ODS钢显微组织及制备工艺过程的复杂性,在成分设计与微纳显微组织的调控及其与服役性能的匹配和相关机理方面,依然存在许多制约ODS钢实际工程应用的基础性问题。
   本文针对制约先进核能系统用ODS钢应用的基础核心问题,把握ODS钢显微组织特点及其与成分设计和制备技术之间的关系这一主线,就国内外关于ODS钢显微组织及其分析手段、氧化物弥散粒子的特点及其高温时效和辐照稳定性、成分设计和制备技术对显微组织的影响等研究内容进行总结和分析,对ODS钢的应用前景和存在的问题进行总结和展望,为满足先进反应堆服役环境的ODS钢的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐帅
陈灵芝
曹书光
贾皓东
周张健
关键词:  氧化物弥散强化钢  成分设计  显微组织  稳定性  反应堆包壳  聚变堆包层  抗辐照性能    
Abstract: Nuclear energy is a kind of important clean energy. The fourth-generation reactors and fusion reactors with improved safety and better economy are being developed internationally. Compared with the current commercial second and third-generation reactors, these advanced reactors will serve in a harsher environment with higher operation temperature and irradiation dose. The traditional zirconium alloy and stainless steel cannot meet the demanding service conditions in the future reactors. The development of new grade key structural materials with excellent comprehensive service performance has become one of the bottlenecks restricting the engineering application of advanced nuclear energy system. Ultra-fine nano-scale oxide particles with extremely high number density can be introduced into the steel matrix by advanced powder metallurgy methods such as mechanical alloying. Compared to the similar traditional melted steels, the oxide dispersion strengthened (ODS) steels show improved high temperature creep strength and anti-irradiation properties, thus can work at higher temperature. ODS steel has been identified as an important candidate material for cladding of fourth-generation reactors and blanket of future fusion reactors, which become an international research hot spot.
The superiority of ODS steel is based on its unique microstructure formed by advanced powder metallurgy process, i.e. submicron ultra-fine grain structure and homogeneous dispersed nano-oxide particles or clusters with an average particle size of only a few nanometers and high number density (above 1023 m-3). These oxide particles or clusters have extremely high thermal stability and irradiation stability, which can effectively strengthen the materials by dislocation pinning, thereby improving the high temperature strength and increasing the service temperature of the material. Besides, the interface formed between a large number of dispersed particles and the matrix can effectively capture the defects and bubbles caused by irradiation, and in consequence, significantly improve the resistance for irradiation induced swelling. Microstructure design and control to meet the service requirements is a core issue for the preparation of high-performance advanced materials, while the microstructure is obviously affec-ted by composition design, fabrication technology and process parameters. Although the research activities on ODS steels have become more and more active in recent years, some fundamental problems, such as the relationship between composition design, fabrication history and micro-nano-structure still need further exploration due to the complexity of the microstructure and preparation process of ODS steels.
This paper focuses on the basic core problems of the application of ODS steel for advanced nuclear energy systems, follows the thread of the relationship among the microstructure characteristics, composition design and preparation technology, and summarizes the stat-of-art global research outputs. It is expected to provide reference for the engineering application of the ODS steel in the advanced nuclear reactors.
Key words:  ODS steel    composition design    microstructure    stability    reactor cladding    fusion blanket    radiation resistance
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TG142  
  TB333  
基金资助: 科技部国际热核聚变实验堆计划专项(2015GB121006)
作者简介:  徐帅,2014年6月毕业于北京科技大学,获得工学学士学位。周张健,北京科技大学材料科学与工程学院教授、博士研究生导师,zhouzhj@mater.ustb.cn。
引用本文:    
徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
XU Shuai, CHEN Lingzhi, CAO Shuguang, JIA Haodong, ZHOU Zhangjian. Research Progress on Microstructure Design and Control of ODS Steels Applied to Advanced Nuclear Energy Systems. Materials Reports, 2019, 33(1): 78-89.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901009  或          http://www.mater-rep.com/CN/Y2019/V33/I1/78
1 International status and prospects for nuclear power 2017. 61st IAEA Ge-neral conference,2017.2 Technology roadmap-nuclear energy. International Energy Agency, 2015.3 Jia X. Application of portfolio management in multi-site nuclear power plant project. Master’s thesis, Xi’an University of Architecture and Technology, China,2018(in Chinese).贾宪禹.核电多项目建设组合管理应用研究.硕士学位论文,西安建筑科技大学,2018.4 Van Duysen J C,De Bellefon G M.Journal of Nuclear Materials,2017,484,209.5 Hosemann P, Frazer D, Fratoni M, et al. Scripta Materialia,2018,143,181.6 Zinkle S J, Snead L L. Annual Review of Materials Research,2014,44(1),241.7 Lu K, Lu L, Suresh S. Science,2009,324(5925),349.8 Klueh R L. International Materials Reviews,2005,50(5),287.9 De Bremaecker A. Journal of Nuclear Materials,2012,428(1-3),13.10 Bischoff J, Motta A T. Journal of Nuclear Materials,2012,424(1-3),261.11 Hosemann P, Thau H T, Johnson A L, et al. Journal of Nuclear Mate-rials,2008,373(1-3),246.12 Ricci E, Giuranno D, Canu G, et al. Materials and Corrosion,2018,373,7.13 Zinkle S J, Boutard J L, Hoelzer D T, et al. Nuclear Fusion,2017,57(9),092005.14 Klueh R L, Shingledecker J P, Swindeman R W, et al. Journal of Nuclear Materials,2005,341(2-3),103.15 Schneibel J H, Liu C T, Miller M K, et al. Scripta Materialia,2009,61(8),793.16 He P, Klimenkov M, Möslang A, et al. Journal of Nuclear Materials,2014,455(1-3),167.17 Odette G R. JOM,2014,66(12),2427.18 Ukai S, Ohtsuka S, Kaito T, et al. In: Structural Materials for Generation IV Nuclear Reactors, Elsevier, Woodhead Publishing,2017,pp.357.19 Capdevila C, Miller M K, Russell K F, et al. Materials Science and Engineering: A,2008,490(1-2),277.20 Odette G R. Scripta Materialia,2018,143,142.21 Odette G R, Alinger M J, Wirth B D. Annual Review of Materials Research,2008,38,471.22 Larson D J, Maziasz P J, Kim I S, et al. Scripta Materialia,2001,44(2),359.23 Wu X, Yang M, Yuan F, et al. Proceedings of the National Academy of Sciences,2015,112(47),14501.24 Srinivasarao B, Oh-ishi K, Ohkubo T, et al. Scripta Materialia,2008,58(9),759.25 Ratti M, Leuvrey D, Mathon M H, et al. Journal of Nuclear Materials,2009,386,540.26 Ohnuma M, Suzuki J, Ohtsuka S, et al. Acta Materialia,2009,57(18),5571.27 He P, Gao P, Tian Q, et al. Materials Letters,2017,209,535.28 Zhang G, Mo K, Miao Y, et al. Materials Science and Engineering: A,2015,637,75.29 Lin J L, Mo K, Yun D, et al. Journal of Nuclear Materials,2016,471,289.30 Mo K, Zhou Z, Miao Y, et al. Journal of Nuclear Materials,2014,455(1),376.31 Yang L, Jiang Y, Wu Y, et al. Acta Materialia,2016,103,474.32 Dou P, Kimura A, Okuda T, et al. Acta Materialia,2011,59(3),992.33 Ribis J, De Carlan Y. Acta Materialia,2012,60(1),238.34 Klimiankou M, Lindau R, Möslang A.Journal of Crystal Growth,2003,249(1-2),381.35 Li S F. Study on oxide strengthened dispersion alloys for Generation Ⅳ advanced nuclear systems. Doctor’s thesis, University of Science and Technology Beijing, China,2016(in Chinese).李少夫.用于第四代先进核能系统的氧化物弥散强化合金的研究.博士学位论文,北京科技大学,2016.36 Kim J H, Byun T S, Hoelzer D T, et al. Materials Science and Enginee-ring: A,2013,559,111.37 Zhang G M. Study on strengthening mechanism and performance evaluation of 9Cr oxide dispersion strengthened steel. Doctor’s thesis, University of Science and Technology Beijing, China,2016(in Chinese).张广明.9Cr氧化物弥散强化钢的强化机理研究及性能评价.博士学位论文,北京科技大学,2016.38 Hoelzer D T, Bentley J, Sokolov M A, et al. Journal of Nuclear Materials,2007,367,166.39 Kimura A. Materials Transactions,2005,46(3),394.40 Zhang G, Zhou Z, Mo K, et al. Journal of Alloys and Compounds,2015,648,223.41 Gong M, Zhou Z, Hu H, et al. Journal of Nuclear Materials,2015,462,502.42 Li S, Zhou Z, Jang J, et al. Journal of Nuclear Materials,2014,455(1-3),194.43 Kobayashi S, Takasugi T. Scripta Materialia,2010,63(11),1104.44 Capdevila C, Miller M K, Toda I, et al. Materials Science and Enginee-ring: A,2010,527(29-30),7931.45 Kimura A, Kasada R, Iwata N, et al. Journal of Nuclear Materials,2011,417(1-3),176.46 Gussev M N, Field K G, Yamamoto Y. Materials & Design,2017,129,227.47 Edmondson P D, Briggs S A, Yamamoto Y, et al. Scripta Materialia,2016,116,112.48 Han W, Yabuuchi K, Kimura A, et al. Nuclear Materials and Energy,2016,9,610.49 Field K G, Briggs S A, Sridharan K, et al. Journal of Nuclear Materials,2017,489,118.50 Bloom E E, Conn R W, Davis J W, et al. Journal of Nuclear Materials,1984,122(1-3),17.51 Imai Y, Miyazaki T. Journal of the Japan Institute of Metals,1965,29(6),642.52 Kim I S, Okuda T, Kang C Y, et al. Metals and Materials,2000,6(6),513.53 Li Z, Lu Z, Xie R, et al. Fusion Engineering and Design,2017,121,159.54 Williams C A, Unifantowicz P, Baluc N, et al. Acta Materialia,2013,61(6),2219.55 Klueh R L, Maziasz P J, Kim I S, et al. Journal of Nuclear Materials,2002,307,773.56 London A J, Santra S, Amirthapandian S, et al. Acta Materialia,2015,97,223.57 Sakasegawa H, Chaffron L, Legendre F, et al. Journal of Nuclear Mate-rials,2009,384(2),115.58 Klimenkov M, Möslang A, Lindau R. The European Physical Journal-Applied Physics,2008,42(3),293.59 Hsiung L L, Fluss M J, Tumey S J, et al. Physical Review B,2010,82(18),184103.60 Yu C Z, Oka H, Hashimoto N, et al. Journal of Nuclear Materials,2011,417(1-3),286.61 Dou P, Kimura A, Kasada R, et al. Journal of Nuclear Materials,2014,444(1-3),441.62 Dryepondt S, Unocic K A, Hoelzer D T, et al. Journal of Nuclear Mate-rials,2018,501,59.63 Sherif El-Eskandarany M. In: Mechanical Alloying(Second Edition), Elsevier, William Andrew Publishing,2015,pp.13.64 Ohtsuka S, Kaito T, Yano Y, et al. Journal of Nuclear Science and Technology,2013,50(5),470.65 Oksiuta Z, Baluc N. Nuclear Fusion,2009,49(5),055003.66 Ohtsuka S, Ukai S, Fujiwara M. Journal of Nuclear Materials,2006,351(1-3),241.67 Ukai S, Fujiwara M. Journal of Nuclear Materials,2002,307,749.68 Walker J C, Berggreen K M, Jones A R, et al. Advanced Engineering Materials,2009,11(7),541.69 Gao R, Zeng L, Ding H, et al. Materials & Design,2016,89,1171.70 Arkhurst B M, Park J J, Lee C H, et al. Korean Journal of Metals and Materials,2017,55(8),550.71 Boegelein T, Dryepondt S N, Pandey A, et al. Acta Materialia,2015,87,201.72 Hunt R M, Kramer K J, El-Dasher B. Journal of Nuclear Materials,2015,464,80.73 Euh K, Arkhurst B, Kim I H, et al. Metals and Materials International,2017,23(6),1063.74 Tatlock G J, Dawson K, Boegelein T, et al. Materials Today: Procee-dings,2016,3(9),3086.75 Boegelein T, Louvis E, Dawson K, et al. Materials Characterization,2016,112,30.76 Chang H J, Cho H Y, Kim J H. Journal of Alloys and Compounds,2015,653,528.77 Shi Z, Han F. Materials & Design,2015,66,304.78 Moghadasi M A, Nili-Ahmadabadi M, Forghani F, et al. Scientific Reports,2016,6,38621.79 Okuda T, Fujiwara M. Journal of Materials Science Letters,1995,14(22),1600.80 Kimura Y, Takali S, Suejima S, et al. ISIJ International,1999,39(2),176.81 Kim S W, Shobu T, Ohtsuka S, et al. Materials Transactions,2009,50(4),917.82 Xu J, Liu C T, Miller M K, et al. Physical Review B,2009,79(2),020204.83 Klimenkov M, Lindau R, Möslang A. Journal of Nuclear Materials,2009,386(5),553.84 Williams C A, Marquis E A, Cerezo A, et al. Journal of Nuclear Mate-rials,2010,400(1),37.85 Marquis E A. Applied Physics Letters,2008,93(18),181904.86 Oka H, Tanno T, Ohtsuka S, et al. Nuclear Materials & Energy,2016,9,346.87 Klueh R L, Hashimoto N, Maziasz P J. Journal of Nuclear Materials,2007,367,48.88 Byun T S, Yoon J H, Hoelzer D T, et al. Journal of Nuclear Materials,2014,449(1-3),290.89 Li S F, Zhou Z J, Wang P H, et al. Materials & Design,2016,90,318.90 Zilnyk K D, Pradeep K G, Choi P, et al. Journal of Nuclear Materials,2017,492,142.91 Miller M K, Kenik E A, Russell K F, et al. Materials Science & Enginee-ring A,2003,353(1),140.92 Alinger M J, Odette G R, Hoelzer D T.Journal of Nuclear Materials,2004,329,382.93 Miller M K, Hoelzer D T, Kenik E A, et al. Intermetallics,2005,13(3),387.94 Mao X, Kim T K, Kim S S, et al. Journal of Nuclear Materials,2012,428(1-3),82.95 Krautwasser P, Czyrska-Filemonowicz A, Widera M, et al. Materials Science & Engineering A,1994,177(1-2),199.96 Alamo A, Bertin J L, Shamardin V K, et al. Journal of Nuclear Materials,2007,367(1),54.97 Ribis J, Lozano-Perez S. Journal of Nuclear Materials,2014,444(1-3),314.98 Toloczko M B, Gelles D S, Garner F A, et al. Journal of Nuclear Mate-rials,2004,329,352.99 Aydogan E, Almirall N, Odette G R, et al. Journal of Nuclear Materials,2017,486,86.100 Lescoat M L, Ribis J, Chen Y, et al. Acta Materialia,2014,78(2),328.101 Hsiung L, Fluss M, Tumey S, et al. Journal of Nuclear Materials,2011,409(2),72.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[4] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[5] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[6] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[7] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[8] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[9] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[12] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[13] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[14] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[15] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed