Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2839-2846    https://doi.org/10.11896/cldb.19010111
  材料与可持续发展(二)—材料绿色制造与加工* |
金属增材制造过程的在线监测研究综述
产玉飞1,陈长军1,2,张敏1
1 苏州大学机电工程学院激光加工中心,苏州 215021
2 兰州理工大学有色金属先进加工与再利用国家重点实验室,兰州 730050
Review of On-line Monitoring Research on Metal Additive Manufacturing Process
CHAN Yufei1, CHEN Changjun1,2, ZHANG Min1
1 Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 20692KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属增材制造(AM)技术融合制造技术、光学技术、数控技术、传感技术等多门科学技术,是一门多学科交叉的新型制造技术。与传统减材制造方法相比,此技术具有易加工结构复杂零件、加工材料广、制造周期短、环境污染小等优点。经过数十年的发展,该技术已被广泛应用于航空航天、快速原型制造、生物医疗、装饰品制造等诸多领域,并对原有的生产方式产生了重要的影响。但是由于缺乏对金属增材制造过程进行在线监测,阻碍了该技术在一些对零件质量要求很高的领域的进一步发展,如医疗和航空航天等高精尖领域,针对这个问题,金属增材制造过程在线监测研究应运而生。
   在金属增材制造过程中,零件的质量和尺寸精度受工艺参数(如激光功率、送粉率、扫描速度等)、外部因素(基板温度、冷却方式)及熔池的温度和尺寸等多种因素影响,因此这些影响因素成为在线监测研究的主要对象。且随着金属增材制造技术制造的功能梯度性零件在航空航天领域的应用,对零件的元素成分和显微组织实现在线监测是十分重要的。近10年来熔池的温度和尺寸监测一直是AM在线监测研究的焦点,并取得了丰硕的成果。近六年来,元素成分和显微组织的在线监测也得到初步发展。在线监测研究在充分发挥金属增材制造技术优势的同时,不仅提高了零件的质量和尺寸精度,还对促进功能梯度性零件的开发和制造具有重要意义,扩大了该技术的应用范围。
   关于熔池温度和尺寸的在线监测研究,目前已经能实现闭环控制,即根据测量得到的数据反馈进行相应的动作,从而改善零件的质量和尺寸精度。而元素成分和显微组织在线监测系统由于研究时间较短,只有显微组织能实现闭环控制,元素成分目前只能实现实时监测,尚未实现闭环控制。
   本文归纳了熔池温度、熔池尺寸、元素成分和显微组织这四种在线监测研究中所使用的监测工具及其工作原理,并分别对这四种在线监测系统进行了原理介绍和结果分析,分析了金属增材制造过程在线监测面临的问题并展望了其前景,以期为相关研究方向的初学者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
产玉飞
陈长军
张敏
关键词:  金属增材制造  在线监测  熔池温度  熔池尺寸  元素成分  显微组织    
Abstract: Metal additive manufacturing technology combines manufacturing technology, optical technology, numerical control technology, sensing technology and other scientific technologies,so it is a multi-disciplinary new manufacturing technology. Compared with traditional reduced mate-rial manufacturing methods, this technology have some advantages that contain wide processing materials, short manufacturing cycle, and less environmental pollution, produce parts with complex structure easily. After decades of development, the technology has been widely used in aerospace, rapid prototyping, biomedical, decorative manufacturing and many other fields. However, the lack of on-line monitoring of parts produced using metal additive manufacturing technology has hindered the further development of this technology in areas requiring high quality and dimensional accuracy of parts, such as medical and aerospace. In response to this problem, on-line monitoring research on the metal additive manufacturing process came into being.
In the metal additive manufacturing process, the quality and dimensional accuracy of the parts are affected by process parameters (such as laser power, powder feeding rate, scanning speed, etc.), external factors (substrate temperature, cooling method), and temperature and size of the molten pool. In a result, these factors have become the main object of on-line monitoring research.Moreover, with the application of gradient functional parts manufactured by AM technology in some fields such as aerospace, it is important to achieve on-line monitoring of the elemental composition and microstructure of the part. The temperature and size monitoring of the molten pool in the past 10 years has been the focus of on-line monitoring research and has achieved fruitful results. In the past three years, in addition to the temperature and size monitoring of the molten pool, there have been some new on-line monitoring studies, such as on-line monitoring of elemental composition and cooling rate. On-line monitoring research has increased the quality and dimensional accuracy of parts while fully utilizing the advantages of metal additive manufacturing technology, and is important for the development and manufacture of functional parts, and expands the application field of this technology.
Regard to on-line monitoring of temperature and size of melt pool, closed-loop control has been implemented. In the closed-loop control system, the measured data is fed back to the controller, and the controller gives the actuator the corresponding action based on the deviation, ultimately achieving the purpose of improving the part quality and dimensional accuracy. Because the new on-line monitoring system has a short research time, only the microstructure on-line monitoring can achieve closed-loop control. The on-line monitoring of composition has not achieved closed-loop control. Therefore, only real-time monitoring of composition can be realized at present.
This paper summarizes the monitoring tools used in the on-line monitoring research of metal additive manufacturing process and its working principle, and introduces on-line monitoring systems such as melt pool temperature and size, element composition and microstructure. We then pay attention to analyze the problems confronting the current on-line monitoring research on metal additive manufacturing process and propose the possible future direction in this field. The prospect of this review is intended to provide a reference for beginners in related research field.
Key words:  metal additive manufacturing    on-line monitoring    melt pool temperature    melt pool size    composition    microstructure
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TP273  
  TP164  
基金资助: 江苏省先进制造技术重点实验室开放式基金(HGAMTL-1701);江苏省333人才项目(BRA2017098);苏州市科技局重点研发计划(SYG201642);兰州理工大学有色金属先进加工与再利用国家重点实验室开放式基金(SKLAB02014006)
作者简介:  产玉飞,2016年6月毕业于安徽理工大学,获得工学学士学位。现为苏州大学机电工程学院硕士研究生,在陈长军教授的指导下进行研究,目前主要研究领域为增材制造过程元素成分的在线监测。
陈长军,苏州大学机电学院教授、硕士研究生导师。2000年7月本科毕业于东北大学有色金属冶金专业,2007年1月在中国科学院金属研究所取得博士学位,2007—2011年在武汉科技大学材料与冶金学院担任副教授、硕士研究生导师。2011年8月至今担任苏州大学机电工程学院激光加工中心教授,2013年9月至2014年9月赴美国哥伦比亚大学进行国家公派访问。2013年获苏州市科研院所、高等学校紧缺高层次人才称号,2016年获得江苏省“333工程”人才称号,现任江苏省激光产业技术创新战略联盟秘书长。主要从事镁合金,钛合金,高温合金,铝合金,特殊用途钢的激光表面制造与再制造。在材料与激光增材制造领域共发表公开文献200多篇,包括 International Journal of Surface Science and Engineering、 Laser in Engineering、 Journal of Material Enginee ring and Performance、International Heat Treatment and Surface Engineering、Rare Metal material and Engineering和Journal of Alloys and Compounds等期刊。获授权发明专利20多项,实用新型40多项。
引用本文:    
产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
CHAN Yufei, CHEN Changjun, ZHANG Min. Review of On-line Monitoring Research on Metal Additive Manufacturing Process. Materials Reports, 2019, 33(17): 2839-2846.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010111  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2839
1 Lu B H, Li D C.<i>Machine Building & Automation</i>, 2013,42(4), 1 (in Chinese).<br />
卢秉恒, 李涤尘.机械制造与自动化, 2013, 42(4),1.<br />
2 Yang Q, Lu Z L, Huang F X, et al.<i>Aeronautical Manufacturing Techno-logy</i>, 2016, 507(12), 26 (in Chinese).<br />
杨强, 鲁中良, 黄福享,等. 航空制造技术, 2016, 507(12),26.<br />
3 Hoye N, Li H J, Cuiuri D, et al.<i>Materials Science Forum</i>, 2014, 777,124.<br />
4 Salmi M, Paloheimo K S, Tuomi J, et al.<i>Journal of Cranio-Maxillofacial Surgery</i>, 2013, 41(7),603.<br />
5 Campbell I, Bourell D, Gibson I. <i>Rapid Prototyping Journal</i>, 2012, 18(4),255.<br />
6 Lu L.<i>Materials Review</i>, 2018, 32(S1),390.<br />
陆璐.材料导报, 2018, 32(专辑31),390.<br />
7 DeHosson J T, Pei Y.<i>ActaMaterialia</i>, 2000, 48(10), 2617.<br />
8 Hu X D, Yu C S, Yao J H.<i>Laser & Optoelectronics Progress</i>, 2013, 50(12), 31(in Chinese).<br />
胡晓冬, 于成松, 姚建华.激光与光电子学进展, 2013, 50(12), 31.<br />
9 Ye J Y.Data-driven based predictive control design for temperature of molten pool during laser additive manufacturing.'s Thesis, Hunan University, China, 2017 (in Chinese).<br />
叶进余. 基于数据驱动的激光增材制造熔池温度预测控制. 硕士学位论文,湖南大学,2016.<br />
10 Zhang Y C. Studies on component segregation and strengthening mechanism of laser cladding INCONEL 718 alloy coating.Ph.D. Thesis. Shanghai Jiao Tong University, China, 2013(in Chinese).<br />
张尧成. 激光熔覆INCONEL 718合金涂层的成分偏聚与强化机理研究.博士学位论文, 上海交通大学, 2013.<br />
11 Xie R D, Lu Z L, Ye Y M. <i>Foundry,</i> 2017, 66(1), 33 (in Chinese).<br />
解瑞东, 鲁中良, 弋英民.铸造, 2017, 66(1), 33.<br />
12 Xiong J, Xue Y G, Chen H, et al.<i>Electric Welding Machine</i>, 2015, 45(9), 45 (in Chinese).<br />
熊俊, 薛永刚, 陈辉,等.电焊机, 2015, 45(9), 45.<br />
13 Everton S K, Hirsch M, Stravroulakis P, et al. <i>Materials & Design</i>, 2016, 95, 431.<br />
14 Tapia G, Elwany A.<i>Journal of Manufacturing Science & Engineering</i>, 2014, 136(6), 1.<br />
15 Thompson S M, Bian L, Shamsaei N, et al. <i>Additive Manufacturing</i>, 2015, 8, 36.<br />
16 Liu Weiwei, Tang Zijue, Liu Xuyang, et al.<i>Procedia CIRP</i>,2017, 61, 235.<br />
17 Griffith M L, Schlienger M E, Harwell L D. <i>Materials & Design</i>, 1999, 20(2-3), 107.<br />
18 Hu Y P, Chen C W, Mukherjee K. <i>Journal of Laser Applications</i>, 2000, 12(3), 126.<br />
19 Liu S, Farahmand P, Kovacevic R.<i>Optics & Laser Technology</i>, 2014, 64(4), 363.<br />
20 Bi G, Sun C N, Gasser A.<i>Journal of Materials Processing Technology</i>, 2013, 213(3), 463.<br />
21 Wang L, Felicelli S D, Craig J E.<i>Chinese Journal of Rare Metal</i>, 2007, (S1), 153.<br />
22 Song L, Mazumder J. <i>IEEE Transactions on Control Systems Technology</i>, 2011, 19(6), 1349.<br />
23 Smurov I, Doubenskaia M, Zaitsev A. <i>Surface & Coatings Technology</i>, 2013, 220(15), 112.<br />
24 Bi G, Schürmann B, Gasser A. <i>International Journal of Machine Tools & Manufacture</i>, 2007, 47(3), 555.<br />
25 Berumen S, Bechmann F, Lindner S. <i>Physics Procedia</i>, 2010, 5, 617.<br />
26 Clijsters S, Craeghs T, Buls S.<i>International Journal of Advanced Manufacturing Technology</i>, 2014, 75(5-8),1089.<br />
27 Miyagi M, Tsukamoto T, Kawanaka H.<i>Journal of Laser Applications</i>, 2014,26(3), 1.<br />
28 Iravani-Tabrizipour Mehrdad, Toyserkani E. <i>Machine Vision & Applications, </i>2007, 18(6), 343.<br />
29 Asselin M, Toyserkani E, Iravani-Tabrizipour M.<i>IEEE International Conference</i>, 2005, 3, 1190.<br />
30 Farshidianfar M H, Khajepour A, Gerlich A. <i>International Journal of Advanced Manufacturing Technology</i>, 2016, 82, 1173.<br />
31 Farshidianfar M H, Khajepour A, Gerlich A P.<i>Journal of Materials Processing Technology</i>, 2016, 231, 468.<br />
32 Schwerdtfeger J, Singer R F, K rner C. <i>Rapid Prototyping Journal,</i>2012, 18(4), 259.<br />
33 Farshidianfar M H, Khajepour A, Gerlich A P. <i>Journal of Materials Processing Technology</i>, 2016, 231, 468.<br />
34 Salehi D, Brandt M. <i>International Journal of Advanced Manufacturing Technology</i>, 2006, 29(3-4), 273.<br />
35 Bi G, Gasser A, Wissenbach K.<i>Optics & Lasers in Engineering, 2006</i>, 44(12), 1348.<br />
36 Tang L, Landers R G.<i>Journal of Manufacturing Science & Engineering</i>, 2010, 132(1), 0110101.<br />
37 Tang L, Landers R G. <i>Journal of Manufacturing Science & Engineering</i>, 2010, 132-1, 01101101.<br />
38 Song L, Bagavath Singh V, Dutta B. <i>International Journal of Advanced Manufacturing Technology</i>, 2012, 58(1-4), 247.<br />
39 Craeghs T, BechmannF, Berumen S. <i>Physics Procedia</i>, 2010, 5(5), 505.<br />
40 Devesse W, De Baere D, Hinderdael Micha l, et al.<i>Journal of Laser Applications</i>, 2016, 28(2), 022302.<br />
41 Miyagi M, Tsukamoto T, Kawanaka H. <i>Journal of Laser Applications</i>, 2014, 26(3), 032003.<br />
42 str m K J, Hgglund T. <i>Control Engineering Practice</i>, 2001, 9(11), 1163.<br />
43 Ang K H, Chong G, Li Y. <i>IEEE Transactions on Control Systems Techno-logy</i>, 2005, 13(4), 559.<br />
44 Clarke D W, Mohtadi C, Tuffs P S.<i>Automatica</i>, 1987, 23(87), 137.<br />
45 Jang J S R .<i>IEEE Transactions on Systems Man and Cybernetics</i>, 1993, 23(3), 665.<br />
46 Huang W K. Research on composition monitoring during laser additive manufacturing titanium alloy process.'s Thesis, Hunan University, China, 2017 (in Chinese).<br />
黄文康. 激光增材制造钛合金过程成分监测的研究. 硕士学位论文, 湖南大学, 2017.<br />
47 Song L, Mazumder J.<i>IEEE Sensors Journal</i>, 2012, 12(5), 958.<br />
48 Song L, Huang W, Han X, et al.<i>IEEE Transactions on Industrial Electronics</i>, 2016, 64(1), 633.<br />
49 Mazumder Jyoti.<i>Procedia CIRP</i>, 2015, 36, 187.<br />
50 Farshidianfar M H, Khajepour A, Gerlich A.<i>The International Journal of Advanced Manufacturing Technology</i>, 2016, 82(5-8), 1173.<br />
51 Guo H, Zheng B, Liu H. <i>Optics & Laser Technology</i>, 2017, 96, 58.<br />
52 Song Y, Zi X, Fu Y.<i>Measurement</i>,2018,118, 105.<br />
53 Thompson A, Maskery I, Leach R K. <i>Measurement Science and Technology</i>, 2016, 27(7), 072001.<br />
54 Kolkoori S, Wrobel N, Zscherpel U. <i>NDT & E International</i>, 2015, 70, 41.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[6] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[7] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[8] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[9] 王云鹏, 胡嘉玮, 许小云, 刘道峰, 蒋洪章, 王晓勇, 颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[10] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[11] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[12] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[13] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[14] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[15] 金青林, 汪洋, 曹磊, 宋群玲. 糊状区渗氮对Cr10Mn9Ni0.7合金氮含量及凝固相变过程的影响[J]. 《材料导报》期刊社, 2018, 32(4): 579-583.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed