Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2479-2482    https://doi.org/10.11896/cldb.18090046
  材料与可持续发展(二)——材料绿色制造与加工* |
铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能
于晓全1,樊丁1,2,黄健康1,2,李春玲1
1.兰州理工大学材料科学与工程学院,兰州 730050
2.兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Microstructure and Mechanical Property of Arc-assisted Laser Welding-brazing Butt Joint of Aluminum and Steel
YU Xiaoquan1, FAN Ding1,2, HUANG Jiankang1,2, LI Chunling1
1.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
2.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 2151KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用电弧辅助激光方法实现了铝合金和热镀锌钢的对接熔钎焊。对接头不同区域的组织构成及分布进行了分析,并对熔钎焊接头的力学性能进行测试,讨论了接头拉伸力学性能的影响因素及断裂行为。结果表明:根据焊缝成形可将熔钎焊对接接头分为铺展区、焊缝区、界面区,整个对接接头主要由α-Al柱状组织、Al-Fe金属间化合物等微观组织构成。根据断裂位置的不同,将接头的断裂分为两种典型的模式:由于晶界元素偏析而引起的焊缝区断裂,以及金属间化合物引起的铝/钢界面区断裂。接头的抗拉力学性能由焊缝成形、焊缝组织及金属间化合物等多种因素共同决定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于晓全
樊丁
黄健康
李春玲
关键词:  铝合金/镀锌钢  电弧辅助激光熔钎焊  显微组织  力学性能    
Abstract: Using arc-assisted laser welding-brazing method, an aluminum alloy was joined to steel in a butt configuration. The composition and distribution of microstructure in different zones of the joint were analyzed, and the mechanical properties of the weld joint were tested. The effect factors of tensile mechanical properties and the fracture behavior of the joint were discussed. The results show that, according to the formation of weld joint, the welding-brazing butt joint can be divided into fusion zone, wetting-spreading zone and interface zone. The joint is mainly composed of α-Al columnar crystal microstructure and Al-Fe intermetallic compound. According to the fracture location, the fracture of the joint can be divided into two typical modes: the fracture in the fusion zone, which caused by the segregation of grain boundary, and the fracture at the Al/steel interface zone caused by the intermetallic compounds.
Key words:  aluminum alloy/galvanized steel    arc-assisted laser welding-brazing    microstructure    mechanical property
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TG457  
基金资助: 国家自然科学基金(51465031); 甘肃省基础研究创新群体计划(17JR5RA107); 甘肃省高校协同创新团队项目(2017C-07)
作者简介:  于晓全,1989年出生,2010年毕业于佳木斯大学,获得焊接技术与工程学士学位,现为兰州理工大学材料科学与工程学院博士研究生,导师樊丁。主要从事异种金属激光焊方面研究。
樊丁,教授,兰州理工大学博士研究生导师,1982年毕业于甘肃工业大学,1984年毕业于西安交通大学获硕士学位,三次作为访问学者在日本大阪大学深造学习及合作研究。1993年获得国务院特殊津贴。主要从事焊接物理,焊接方法与智能控制及激光加工等方面的研究,发表论文300余篇。
引用本文:    
于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
YU Xiaoquan, FAN Ding, HUANG Jiankang, LI Chunling. Microstructure and Mechanical Property of Arc-assisted Laser Welding-brazing Butt Joint of Aluminum and Steel. Materials Reports, 2019, 33(15): 2479-2482.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090046  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2479
[1] Long J Q, Lan F C, Chen J Q. Chinese Journal of Mechanical Enginee-ring,2008,44(6),27(in Chinese).龙江启,兰凤崇,陈吉清.机械工程学报,2008,44(6),27.
[2] Shah L H, Ishak M. Advanced Manufacturing Processes,2014,29(8),928(in Chinese).
[3] Qin G L, Wu C S. Chinese Journal of Mechanical Engineering,2016,52(24),24(in Chinese).秦国梁,武传松.机械工程学报,2016,52(24),24.
[4] Sierra G, Peyre P, Deschaux-Beaume F, et al. Materials Science & Engineering A,2007,447(1),197.
[5] Zhao X D, Xiao R S. Chinese Journal of Lasers,2012,39(4),74(in Chinese).赵旭东,肖荣诗.中国激光,2012,39(4),74.
[6] Qin G L, Su Y H, Wang S J. Acta Metallurgica Sinica,2012,48(8),1018(in Chinese).秦国梁,苏玉虎,王术军.金属学报,2012,48(8),1018.
[7] Dong H, Hu W, Duan Y, et al. Journal of Materials Processing Technology,2012,212(2),458.
[8] Lin S B, Song J L, Ma G C, et al. Transactions of the China Welding Institution,2009,30(7),9(in Chinese).林三宝,宋建岭,马广超,等.焊接学报,2009,30(7),9.
[9] Vollertsen F, Thomy C. Welding in the World,2011,55(1-2),58.
[10] Fan D, Wang B, Li C L, et al. Transactions of the China Welding Institution,2016,37(1),1(in Chinese).樊丁,王斌,李春玲,等.焊接学报,2016,37(1),1.
[11] Novak P, Michalcova A, Marek I, et al. Intermetallics,2013,32(32),127.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed