Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1145-1150    https://doi.org/10.11896/j.issn.1005-023X.2018.07.015
  材料综述 |
金属增材制造中微观组织相场法模拟研究进展
耿汝伟1, 杜军2, 魏正英1, 魏培1
1 西安交通大学机械制造系统工程国家重点实验室,西安 710049;
2 高端制造装备协同创新中心,西安 710054
Current Research Status of Phase Field Simulation for Microstructures of Additively Manufactured Metals
GENG Ruwei1, DU Jun2, WEI Zhengying1, WEI Pei1
1 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049;
2 Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an 710054
下载:  全 文 ( PDF ) ( 1660KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属增材制造技术是近30年发展起来的一项具有战略意义的先进制造技术。目前对增材制造的研究主要集中在制造装备与控制系统研发、产品性能测试等方面,对构件内微观组织的形成以及宏微观结构性能的关系研究较少。本文简要介绍了金属增材制造发展现状以及在微观组织演化方面研究的不足,揭示了微观组织演化研究的重要性和迫切性。针对相场法的基本原理和优势,着重分析相场法应用于金属增材制造中的模型选取、非材料物性参数的确定等问题及解决方法,从相场数值模拟的角度来探讨工艺参数对微观组织的影响。文章最后指出利用相场法模拟金属增材制造过程中微观组织演化符合未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿汝伟
杜军
魏正英
魏培
关键词:  金属增材制造  微观组织演化  相场法  数值模拟    
Abstract: Metal additive manufacturing is a strategic and innovative material forming technology that has been developed in nearly three decades. Current research for metal additive manufacturing mainly focuses on the equipment and control system R&D, product (component) testing, etc., but few works touch the issues of microstructure evolution and microstructure-mechanical pro-perty relationship. The development status of metal additive manufacturing and research inadequacy for the produced metal components’ microstructures are summarized in this paper, illustrating the necessity and urgency of microstructure evolution investigation. Based on an introduction of the fundamental principles and advantages of phase field simulation, the unresolved issues and tentative solutions for the model selection, parameters determination, etc., are described emphatically. The influences of process parameters on product (component) microstructure are discussed from the perspective of phase field numerical simulation. Finally, the paper displays the future development trend of exploring the metals’ microstructure evolutions during additive manufacturing process by using phase field simulation.
Key words:  metal additive manufacturing    microstructure evolution    phase field method    numerical simulation
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG111  
基金资助: 国家重点研发计划专项项目(2016YFB1100400);装备预研教育部联合基金(6141A02022109);高校基本科研业务费专项资金
通讯作者:  魏正英:通信作者,女,1967年生,博士,教授,博士研究生导师,主要从事增材制造方面的研究 E-mail:weizhengying437@163.com   
作者简介:  耿汝伟:男,1991年生,博士研究生,主要从事增材制造中微观组织模拟研究 E-mail:ruweigeng1991@163.com
引用本文:    
耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
GENG Ruwei, DU Jun, WEI Zhengying, WEI Pei. Current Research Status of Phase Field Simulation for Microstructures of Additively Manufactured Metals. Materials Reports, 2018, 32(7): 1145-1150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.015  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1145
1 Wang H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J].Acta Aeronautica et Astronautica Sinica,2014,35(10):2690(in Chinese).
王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690.
2 Boettinger W J, Warren J A, Beckermann C, et al. Phase-field si-mulation of solidification[C]∥ASME 2004 International Mechanical Engineering Congress and Exposition.Anaheim,2002:519.
3 Badillo A, Beckermann C. Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification[J].Acta Materialia,2006,54(8):2015.
4 Sun D, Zhu M, Pan S, et al. Lattice Boltzmann modeling of dendri-tic growth in a forced melt convection[J].Acta Materialia,2009,57(6):1755.
5 Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J].Materials & Design,2012,34:159.
6 Fallah V, Corbin S F, Khajepour A. Process optimization of Ti-Nb alloy coatings on a Ti-6Al-4V plate using a fiber laser and blended elemental powders[J].Journal of Materials Processing Technology,2010,210(14):2081.
7 Koike M, Martinez K, Guo L, et al. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications[J].Journal of Materials Processing Technology,2011,211(8):1400.
8 Chao Y P, Qi L H, Zuo H S, et al. Remelting and bonding of depo-sited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture[J].International Journal of Machine Tools & Manufacture,2013,69(3):38.
9 Arcella F G, Froes F H. Producing titanium aerospace components from powder using laser forming[J].JOM,2000,52(5):28.
10Gong Shuili, Suo Hongbo, Li Huaixue. Development and application of metal additive manufacturing technology[J].Aeronautical Manufacturing Technology,2013,433(13):66(in Chinese).
巩水利,锁红波,李怀学.金属增材制造技术在航空领域的发展与应用[J].航空制造技术,2013,433(13):66.
11Wilkes J, Hagedorn Y C, Meiners W. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J].Rapid Prototyping Journal,2013,19(1):51.
12Heinl P, Rottmair A, Korner C. Cellular titanium by selective electron beam melting[J].Advanced Engineering Materials,2007,9(5):360.
13 Yan Yongnian, Qi Haibo, Lin Feng, et al. Produced three-dimensional metal parts by electron beam selective melting[J].Chinese Journal of Mechanical Engineering,2007,43(6):87(in Chinese).
颜永年,齐海波,林峰,等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87.
14 Lin Xin, Yang Haiou, Chen Jing, et al. Microstructure evolution of 316L stainless steel during laser rapid forming[J].Acta Metallurgica Sinica,2006,42(4):361(in Chinese).
林鑫,杨海欧,陈静,等.激光快速成形过程中316L不锈钢显微组织的演变[J].金属学报,2006,42(4):361.
15 Chen L Q. Phase-field method and materials genome initiative (MGI)[J].Chinese Science Bulletin,2013,58(35):3638(in Chinese).
陈龙庆.相场模拟与材料基因组计划[J].科学通报,2013,58(35):3638.
16 Li Dichen, Lu Bingheng,et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J].Journal of Mechanical Engineering,2013,49(6):129(in Chinese).
李涤尘,卢秉恒,等.增材制造:实现宏微结构一体化制造[J].机械工程学报,2013,49(6):129.
17 Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D printing) technology[J].Machine Building & Automation,2013,42(4):1(in Chinese).
卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1.
18 Wang C Y,Beckermann C. Equiaxed dendritic solidification with convection. Part 2: Numerical simulations for an Al-4 wt%Cu alloy[J].Metallurgical & Materials Transactions A,1996,27(9):2765.
19 Lee H N, Ryoo H S, Hwang S K. Monte Carlo simulation of microstructure evolution based on grain boundary character distribution[J].Materials Science & Engineering A,2000,281(1-2):176.
20Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J].Physica D-nonlinear Phenomena,1993,63(3-4):410.
21Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A,1992,45(45):7424.
22Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model of solute trapping during solidification[J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,1993,47(3):1893.
23 Loginova I, Amberg G, Agren J. Phase-field simulations of non-isothermal binary alloy solidification[J].Acta Materialia,2001,49(4):573.
24 Suzuki T, Ode M, Kim S G, et al. Phase-field model of dendritic growth[J].Journal of Crystal Growth,2002,s237-239:125.
25 Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys[J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,2000,60:7186.
26 Zhao Su, Li Jinfu, Liu Li, et al. Effect of solute trapping on the growth process in undercooled eutectic melts[J].Acta Metallurgica Sinica,2008,44(11):1335(in Chinese).
赵素,李金富,刘礼,等.溶质截留对过冷共晶生长过程的影响[J].金属学报,2008,44(11):1335.
27 Karma A. Phase-field formulation for quantitative modeling of alloy solidification[J].Physical Review Letters,2001,87(11):115701.
28 Ramirez J C, Beckermann C, Karma A, et al. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,69(1):051607.
29 Ramirez J C, Beckermann C. Examination of binary alloy free dendritic growth theories with a phase-field model[J].Acta Materialia,2005,53(6):1721.
30Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification[J].Physical Review E Statistical Nonli-near & Soft Matter Physics,2004,70(1):061604.
31Amoorezaei M, Gurevich S, Provatas N. Spacing characterization in Al-Cu alloys directionally solidified under transient growth conditions[J].Acta Materialia,2010,58(18):6115.
32Sun Daojin, Liu Jichang, Li Qindong. Phase-field method simulation of microstructure evolution at the bottom of melt pool in coaxial laser cladding[J].Chinese Journal of Laser,2013,40(4):93(in Chinese).
孙道金,刘继常,李钦栋.激光熔覆纯镍熔池底部组织生长的相场法模拟[J].中国激光,2013,40(4):93.
33 Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys[J].Acta Materialia,2012,60(4):1633.
34 Fallah V, Alimardani M, Corbin S F, et al. Temporal development of melt-pool morphology and clad geometry in laser powder deposition[J].Computational Materials Science,2011,50(7):2124.
35 Xie Y, Dong H, Liu J, et al. A multi-scale approach to simulate solidification structure evolution and solute segregation in a weld pool[J].Journal of Algorithms & Computational Technology,2013,7(4):489.
36 Kundin J, Mushongera L, Emmerich H. Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 superalloy[J].Acta Materialia,2015,95:343.
37 Kou S. Welding metallurgy,2nd edition[M].Hoboken:John Wiley & Sons,Inc.,2003:243.
38 Poorhaydari K, Patchett B M, Ivey D G. Estimation of cooling rate in the welding of plates with intermediate thickness[J].Welding Journal,2005,84(10):149.
39 Kessler D A, Koplik J, Levine H. Geometrical models of interface evolution. Ⅲ. Theory of dendritic growth[J].Physical Review A,1985,31(3):313.
40Kessler D A, Levine H. Velocity selection in dendritic growth[J].Physical Review B Condensed Matter,1986,33(11):7867.
41Farzadi A, Doquang M, Serajzadeh S, et al. Phase-field simulation of weld solidification microstructure in an Al-Cu alloy[J].Modelling & Simulation in Materials Science & Engineering,2008,16(6):065005.
42Wang L, Wei Y, Zhan X, et al. A phase field investigation of dendrite morphology and solute distributions under transient conditions in an Al-Cu welding molten pool[J].Science & Technology of Wel-ding & Joining,2016,21:446.
43 Ferreira A F, Paradela K G, Silva D M D, et al. Numerical simulation of microstructural evolution via phase-field model coupled to the solutal interaction mechanism[J].Materials Sciences & Applications,2015,6(10):907.
44 Kurz W, Bezençon C,Gäumann M.Columnar to equiaxed transition in solidification processing[J].Science and Technology of Advanced Materials,2001,2:185.
45 Wei Yanhong, Wang Yong, Dong Zhibo, et al. Simulation of equiaxed dendritic growth in molten pool of pure metal with phase-field method[J].Transactions of the China Welding Institution,2011,32(3):1(in Chinese).
魏艳红,王勇,董志波,等.纯金属TIG焊熔池等轴晶生长的相场法模拟[J].焊接学报,2011,32(3):1.
46 Gong X, Chou K. Phase-field modeling of microstructure evolution in electron beam additive manufacturing[J].Journal of Metals,2015,67(5):1176.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[7] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[8] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[9] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[10] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[11] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[12] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[13] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[14] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[15] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed