Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1145-1150    https://doi.org/10.11896/j.issn.1005-023X.2018.07.015
  材料综述 |
金属增材制造中微观组织相场法模拟研究进展
耿汝伟1, 杜军2, 魏正英1, 魏培1
1 西安交通大学机械制造系统工程国家重点实验室,西安 710049;
2 高端制造装备协同创新中心,西安 710054
Current Research Status of Phase Field Simulation for Microstructures of Additively Manufactured Metals
GENG Ruwei1, DU Jun2, WEI Zhengying1, WEI Pei1
1 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049;
2 Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an 710054
下载:  全 文 ( PDF ) ( 1660KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属增材制造技术是近30年发展起来的一项具有战略意义的先进制造技术。目前对增材制造的研究主要集中在制造装备与控制系统研发、产品性能测试等方面,对构件内微观组织的形成以及宏微观结构性能的关系研究较少。本文简要介绍了金属增材制造发展现状以及在微观组织演化方面研究的不足,揭示了微观组织演化研究的重要性和迫切性。针对相场法的基本原理和优势,着重分析相场法应用于金属增材制造中的模型选取、非材料物性参数的确定等问题及解决方法,从相场数值模拟的角度来探讨工艺参数对微观组织的影响。文章最后指出利用相场法模拟金属增材制造过程中微观组织演化符合未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿汝伟
杜军
魏正英
魏培
关键词:  金属增材制造  微观组织演化  相场法  数值模拟    
Abstract: Metal additive manufacturing is a strategic and innovative material forming technology that has been developed in nearly three decades. Current research for metal additive manufacturing mainly focuses on the equipment and control system R&D, product (component) testing, etc., but few works touch the issues of microstructure evolution and microstructure-mechanical pro-perty relationship. The development status of metal additive manufacturing and research inadequacy for the produced metal components’ microstructures are summarized in this paper, illustrating the necessity and urgency of microstructure evolution investigation. Based on an introduction of the fundamental principles and advantages of phase field simulation, the unresolved issues and tentative solutions for the model selection, parameters determination, etc., are described emphatically. The influences of process parameters on product (component) microstructure are discussed from the perspective of phase field numerical simulation. Finally, the paper displays the future development trend of exploring the metals’ microstructure evolutions during additive manufacturing process by using phase field simulation.
Key words:  metal additive manufacturing    microstructure evolution    phase field method    numerical simulation
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG111  
基金资助: 国家重点研发计划专项项目(2016YFB1100400);装备预研教育部联合基金(6141A02022109);高校基本科研业务费专项资金
通讯作者:  魏正英:通信作者,女,1967年生,博士,教授,博士研究生导师,主要从事增材制造方面的研究 E-mail:weizhengying437@163.com   
作者简介:  耿汝伟:男,1991年生,博士研究生,主要从事增材制造中微观组织模拟研究 E-mail:ruweigeng1991@163.com
引用本文:    
耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
GENG Ruwei, DU Jun, WEI Zhengying, WEI Pei. Current Research Status of Phase Field Simulation for Microstructures of Additively Manufactured Metals. Materials Reports, 2018, 32(7): 1145-1150.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.015  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1145
1 Wang H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J].Acta Aeronautica et Astronautica Sinica,2014,35(10):2690(in Chinese).
王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690.
2 Boettinger W J, Warren J A, Beckermann C, et al. Phase-field si-mulation of solidification[C]∥ASME 2004 International Mechanical Engineering Congress and Exposition.Anaheim,2002:519.
3 Badillo A, Beckermann C. Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification[J].Acta Materialia,2006,54(8):2015.
4 Sun D, Zhu M, Pan S, et al. Lattice Boltzmann modeling of dendri-tic growth in a forced melt convection[J].Acta Materialia,2009,57(6):1755.
5 Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J].Materials & Design,2012,34:159.
6 Fallah V, Corbin S F, Khajepour A. Process optimization of Ti-Nb alloy coatings on a Ti-6Al-4V plate using a fiber laser and blended elemental powders[J].Journal of Materials Processing Technology,2010,210(14):2081.
7 Koike M, Martinez K, Guo L, et al. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications[J].Journal of Materials Processing Technology,2011,211(8):1400.
8 Chao Y P, Qi L H, Zuo H S, et al. Remelting and bonding of depo-sited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture[J].International Journal of Machine Tools & Manufacture,2013,69(3):38.
9 Arcella F G, Froes F H. Producing titanium aerospace components from powder using laser forming[J].JOM,2000,52(5):28.
10Gong Shuili, Suo Hongbo, Li Huaixue. Development and application of metal additive manufacturing technology[J].Aeronautical Manufacturing Technology,2013,433(13):66(in Chinese).
巩水利,锁红波,李怀学.金属增材制造技术在航空领域的发展与应用[J].航空制造技术,2013,433(13):66.
11Wilkes J, Hagedorn Y C, Meiners W. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J].Rapid Prototyping Journal,2013,19(1):51.
12Heinl P, Rottmair A, Korner C. Cellular titanium by selective electron beam melting[J].Advanced Engineering Materials,2007,9(5):360.
13 Yan Yongnian, Qi Haibo, Lin Feng, et al. Produced three-dimensional metal parts by electron beam selective melting[J].Chinese Journal of Mechanical Engineering,2007,43(6):87(in Chinese).
颜永年,齐海波,林峰,等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87.
14 Lin Xin, Yang Haiou, Chen Jing, et al. Microstructure evolution of 316L stainless steel during laser rapid forming[J].Acta Metallurgica Sinica,2006,42(4):361(in Chinese).
林鑫,杨海欧,陈静,等.激光快速成形过程中316L不锈钢显微组织的演变[J].金属学报,2006,42(4):361.
15 Chen L Q. Phase-field method and materials genome initiative (MGI)[J].Chinese Science Bulletin,2013,58(35):3638(in Chinese).
陈龙庆.相场模拟与材料基因组计划[J].科学通报,2013,58(35):3638.
16 Li Dichen, Lu Bingheng,et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J].Journal of Mechanical Engineering,2013,49(6):129(in Chinese).
李涤尘,卢秉恒,等.增材制造:实现宏微结构一体化制造[J].机械工程学报,2013,49(6):129.
17 Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D printing) technology[J].Machine Building & Automation,2013,42(4):1(in Chinese).
卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1.
18 Wang C Y,Beckermann C. Equiaxed dendritic solidification with convection. Part 2: Numerical simulations for an Al-4 wt%Cu alloy[J].Metallurgical & Materials Transactions A,1996,27(9):2765.
19 Lee H N, Ryoo H S, Hwang S K. Monte Carlo simulation of microstructure evolution based on grain boundary character distribution[J].Materials Science & Engineering A,2000,281(1-2):176.
20Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J].Physica D-nonlinear Phenomena,1993,63(3-4):410.
21Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A,1992,45(45):7424.
22Wheeler A A, Boettinger W J, Mcfadden G B. Phase-field model of solute trapping during solidification[J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,1993,47(3):1893.
23 Loginova I, Amberg G, Agren J. Phase-field simulations of non-isothermal binary alloy solidification[J].Acta Materialia,2001,49(4):573.
24 Suzuki T, Ode M, Kim S G, et al. Phase-field model of dendritic growth[J].Journal of Crystal Growth,2002,s237-239:125.
25 Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys[J].Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics,2000,60:7186.
26 Zhao Su, Li Jinfu, Liu Li, et al. Effect of solute trapping on the growth process in undercooled eutectic melts[J].Acta Metallurgica Sinica,2008,44(11):1335(in Chinese).
赵素,李金富,刘礼,等.溶质截留对过冷共晶生长过程的影响[J].金属学报,2008,44(11):1335.
27 Karma A. Phase-field formulation for quantitative modeling of alloy solidification[J].Physical Review Letters,2001,87(11):115701.
28 Ramirez J C, Beckermann C, Karma A, et al. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,69(1):051607.
29 Ramirez J C, Beckermann C. Examination of binary alloy free dendritic growth theories with a phase-field model[J].Acta Materialia,2005,53(6):1721.
30Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification[J].Physical Review E Statistical Nonli-near & Soft Matter Physics,2004,70(1):061604.
31Amoorezaei M, Gurevich S, Provatas N. Spacing characterization in Al-Cu alloys directionally solidified under transient growth conditions[J].Acta Materialia,2010,58(18):6115.
32Sun Daojin, Liu Jichang, Li Qindong. Phase-field method simulation of microstructure evolution at the bottom of melt pool in coaxial laser cladding[J].Chinese Journal of Laser,2013,40(4):93(in Chinese).
孙道金,刘继常,李钦栋.激光熔覆纯镍熔池底部组织生长的相场法模拟[J].中国激光,2013,40(4):93.
33 Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys[J].Acta Materialia,2012,60(4):1633.
34 Fallah V, Alimardani M, Corbin S F, et al. Temporal development of melt-pool morphology and clad geometry in laser powder deposition[J].Computational Materials Science,2011,50(7):2124.
35 Xie Y, Dong H, Liu J, et al. A multi-scale approach to simulate solidification structure evolution and solute segregation in a weld pool[J].Journal of Algorithms & Computational Technology,2013,7(4):489.
36 Kundin J, Mushongera L, Emmerich H. Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 superalloy[J].Acta Materialia,2015,95:343.
37 Kou S. Welding metallurgy,2nd edition[M].Hoboken:John Wiley & Sons,Inc.,2003:243.
38 Poorhaydari K, Patchett B M, Ivey D G. Estimation of cooling rate in the welding of plates with intermediate thickness[J].Welding Journal,2005,84(10):149.
39 Kessler D A, Koplik J, Levine H. Geometrical models of interface evolution. Ⅲ. Theory of dendritic growth[J].Physical Review A,1985,31(3):313.
40Kessler D A, Levine H. Velocity selection in dendritic growth[J].Physical Review B Condensed Matter,1986,33(11):7867.
41Farzadi A, Doquang M, Serajzadeh S, et al. Phase-field simulation of weld solidification microstructure in an Al-Cu alloy[J].Modelling & Simulation in Materials Science & Engineering,2008,16(6):065005.
42Wang L, Wei Y, Zhan X, et al. A phase field investigation of dendrite morphology and solute distributions under transient conditions in an Al-Cu welding molten pool[J].Science & Technology of Wel-ding & Joining,2016,21:446.
43 Ferreira A F, Paradela K G, Silva D M D, et al. Numerical simulation of microstructural evolution via phase-field model coupled to the solutal interaction mechanism[J].Materials Sciences & Applications,2015,6(10):907.
44 Kurz W, Bezençon C,Gäumann M.Columnar to equiaxed transition in solidification processing[J].Science and Technology of Advanced Materials,2001,2:185.
45 Wei Yanhong, Wang Yong, Dong Zhibo, et al. Simulation of equiaxed dendritic growth in molten pool of pure metal with phase-field method[J].Transactions of the China Welding Institution,2011,32(3):1(in Chinese).
魏艳红,王勇,董志波,等.纯金属TIG焊熔池等轴晶生长的相场法模拟[J].焊接学报,2011,32(3):1.
46 Gong X, Chou K. Phase-field modeling of microstructure evolution in electron beam additive manufacturing[J].Journal of Metals,2015,67(5):1176.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[7] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[8] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[9] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[10] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[11] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[12] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[13] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[14] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[15] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed